Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074206    DOI: 10.1088/1674-1056/ac597c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers

Wen-Jie Wang(王文杰)1,2,†, Ming-Le Liao(廖明乐)1,2, Jun Yuan(袁浚)1,2, Si-Yuan Luo(罗思源)1,2, and Feng Huang(黄锋)1,2
1 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
2 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  The effects of GaN/InGaN asymmetric lower waveguide (LWG) layers on photoelectrical properties of InGaN multiple quantum well laser diodes (LDs) with an emission wavelength of around 416 nm are theoretically investigated by tuning the thickness and the indium content of InGaN insertion layer (InGaN-IL) between the GaN lower waveguide layer and the quantum wells, which is achieved with the Crosslight Device Simulation Software (PIC3D, Crosslight Software Inc.). The optimal thickness and the indium content of the InGaN-IL in lower waveguide layers are found to be 300 nm and 4%, respectively. The thickness of InGaN-IL predominantly affects the output power and the optical field distribution in comparison with the indium content, and the highest output power is achieved to be 1.25 times that of the reference structure (symmetric GaN waveguide), which is attributed to the reduced optical absorption loss as well as the concentrated optical field nearby quantum wells. Furthermore, when the thickness and indium content of InGaN-IL both reach a higher level, the performance of asymmetric quantum wells LDs will be weakened rapidly due to the obvious decrease of optical confinement factor (OCF) related to the concentrated optical field in the lower waveguide.
Keywords:  asymmetric waveguide structure      InGaN multiple quantum wells      optical absorption loss      optical field distribution  
Received:  24 November 2021      Revised:  23 January 2022      Accepted manuscript online:  02 March 2022
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004180 and 61805218), the Science Challenge Project, China (Grant No. TZ2016003-2-1), and the National Key Research and Development Program of China (Grant Nos. 2017YFB0403100 and 2017YFB0403103).
Corresponding Authors:  Wen-Jie Wang     E-mail:  wangwenjie_mtrc@caep.cn

Cite this article: 

Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋) Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers 2022 Chin. Phys. B 31 074206

[1] Nakamura S, Senoh N, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 4056
[2] Hardy M T, Feezell D F, DenBaars S P and Nakamura S 2011 Mater. Today 14 408
[3] Nakamura S 1997 Solid State Commun. 102 237
[4] Pourhashemi A, Farrell R M, Cohen D A, Speck J S, DenBaars S P and Nakamura S 2015 Appl. Phys. Lett. 106 111105
[5] Xing Z Q, Zhou Y J, Liu Y H and Wang F 2020 Chin. Phys. Lett. 37 027302
[6] Chen P, Zhao D G, Jiang D S, Yang J, Zhu J J, Liu Z S, Liu W, Liang F, Liu S T, Xing Y and Zhang L Q 2020 Chin. Phys. B 29 034206
[7] Cheng Y, Liu J P, Tian A Q, Zhang F, Feng M X, Hu W W, Zhang S M, Ikeda M, Li D Y, Zhang L Q and Yang H 2016 Appl. Phys. Lett. 109 092104
[8] Wang W, Xie W, Deng Z, Yang H, Liao M, Li J, Luo X, Sun S and Zhao D 2019 Coatings 9 291
[9] Alahyarizadeh G, Amirhoseiny M and Hassan Z 2016 Opt. Laser. Technol. 76 106
[10] Maeda T, Terao M and Shimano T 2003 Jpn. J. Appl. Phys. 42 1044
[11] Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Yang J, He X G, Li X J, Liu J P, Zhu J J, Zhang S M and Yang H 2014 Opt. Express 22 11392
[12] Chen P, Feng M X, Jiang D S, Zhao D G, Liu Z S, Li L, Wu L L, Le L C, Zhu J J, Wang H, Zhang S M and Yang H 2012 J. Appl. Phys. 112 113105
[13] Liang F, Zhao D G, Jiang D S, Liu Z S, Zhu J J, Chen P, Yang J, Liu W, Liu S T, Xing Y, Zhang L Q, Wang W J, Li M, Zhang Y T and Du G T 2017 Chin. Phys. B 26 124210
[14] Kawaguchi M, Imafuji O, Nozaki S, Hagino H, Takigawa S, Katayama T and Tanaka T 2016 Proc. SPIE 9748 974818
[15] Nozaki S, Kawaguchi M, Morimoto K, Takigawa S, Katayama T and Tanaka T 2017 Journal of Science & Technology in Lighting 41 77
[16] Yuan G, Xiong K, Zhang C, Li Y and Han J 2016 ACS Photon. 3 1604
[17] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
[18] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1997 Appl. Phys. Lett. 70 1417
[19] Wang W, Xie W, Deng Z and Liao M 2019 Micromachines 10 875
[20] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[21] Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 085207
[22] Yang J, Zhao D G, Liu Z S, Jiang D S, Zhu J J, Chen P, Liang F, Liu S T, Liu W, Xing Y and Li M 2018 IEEE Photon. J. 10 1
[23] Laws G M, Larkins E C, Harrison I, Molloy C and Somerford D 2001 J. Appl. Phys. 89 1108
[24] Piprek J, Peng T, Qui G and Olowolafe J O 1997 Proc. IEEE Int. Symp. on Compound Semiconductors 227
[25] Peng T and Piprek J 1996 Electron. Lett. 32 2285
[26] Bergmann M J and Casey H C Jr 1998 J. Appl. Phys. 84 1196
[27] Hager T, Brüderl G, Lermer T, Tautz S, Gomez-Iglesias A, Müller J, Avramescu A, Eichler C, Gerhard S and Strauss U 2012 Appl. Phys. Lett. 101 171109
[28] Yang J, Zhao D G, Liu Z S, Jiang D S, Chen P, Zhu J J, Liu Z S, Liang F, Liu W, Liu S T and Li M 2019 Opt. Laser Technol. 111 810
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[4] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[11] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[12] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[13] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[14] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[15] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
No Suggested Reading articles found!