Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066501    DOI: 10.1088/1674-1056/ac6019
RAPID COMMUNICATION Prev   Next  

Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4

Chunyan Wang(王春艳)1,2,3, Qilong Gao(高其龙)1,†, Andrea Sanson4, and Yu Jia(贾瑜)2,3
1 Key Laboratory of Materials Physics of Ministry of Education, International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 Key Laboratory of Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China;
3 Key Laboratory for Quantum Materials and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China;
4 Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy
Abstract  The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings, high performance fuel cell cathodes to tooth fillings. Negative thermal expansion (NTE) materials, although rare, are fundamental for this purpose. This work focuses on studying tetracyanidoborate salt CuB(CN)4, an interesting cubic-structure material that displays large isotropic NTE. A joint study of synchrotron x-ray diffraction, temperature-dependent Raman spectroscopy, and lattice dynamics calculations was conducted, showing that not only low-frequency optical modes (transverse thermal vibrations of N and C atoms) but also the acoustic modes (the vibrations of Cu atoms as a collective torsion of the neighboring atoms), contribute to NTE. As a result, new insights were gained into the NTE mechanism of CuB(CN)4 and related framework materials.
Keywords:  negative thermal expansion      Prussian blue analogues      crystal structure      phonons  
Received:  29 January 2022      Revised:  26 February 2022      Accepted manuscript online:  23 March 2022
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.66.Fn (Inorganic compounds)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  78.30.-j (Infrared and Raman spectra)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 22071221, 21905252, and 11774078), Natural Science Foundation of Henan Province, China (Grant No. 212300410086), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (No. 10094100510025). All calculations were supported by National Supercomputing Center in Zhengzhou.
Corresponding Authors:  Qilong Gao     E-mail:  qilonggao@zzu.edu.cn

Cite this article: 

Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜) Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4 2022 Chin. Phys. B 31 066501

[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Sanson A 2021 Microstructures 11 2021004
[3] Lind C 2012 Materials 5 1125
[4] Zhang Y, Chen B, Guan D, Xu M, Ran R, Ni M, Zhou W, O’Hayre R and Shao Z 2021 Nature 591 246
[5] Dove M T and Fang H 2016 Rep. Prog. Phys. 79 066503
[6] Sanson A 2019 Mater. Res. Lett. 7 412
[7] Mittal R, Gupta M K and Chaplot S L 2018 Prog. Mater. Sci. 92 360
[8] Barrera G D, Bruno J A O, Barron T H K and Allan N L 2005 J. Phys.: Condens. Matter. 17 R217
[9] Attfield J P 2018 Front. Chem. 6 371
[10] Coates C S and Goodwin A L 2019 Mater. Horiz. 6 211
[11] Li Y, Gao Q L, Chang D H, Sun P J, Liu J Z, Jia Y, Liang E J and Sun Q 2020 J. Phys. Condens. Mater. 32 455703
[12] Li M, Li Y, Wang C and Sun Q 2019 Chin. Phys. Lett. 36 066301
[13] Gao Q, Chen J, Sun Q, Chang D, Huang Q, Wu H, Sanson A, Milazzo R, Zhu H, Li Q, Liu Z, Deng J and Xing X 2017 Angew. Chem. Int. Ed. 56 9023
[14] Wei W, Gao Q, Guo J, Chao M, He L, Chen J and Liang E 2020 Appl. Phys. Lett. 116 181902
[15] Hao Y, Xie H, Zeng G, Yuan H, Hu Y, Guo J and Liang E 2022 Chin. Phys. B 31 046502
[16] Zhang M, Wang C, Zhang Y, Gao Q and Jia Y 2021 Chin. Phys. B 30 056501
[17] Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L and Xing X 2016 J. Am. Chem. Soc. 138 14530
[18] Gao Q, Liang E, Xing X and Chen J 2020 J. Chinese Universities 41 388 (in Chinese)
[19] Chen J, Shi N, Gao Q, Sanson A, Li Q, Fan L, Ren Y, Olivi L and Xing X 2019 Dalton T. 48 3658
[20] Wang J, Gao Q, Gao Y, Luo Y, Guo J, Sun Q and Liang E 2021 Appl. Phys. Lett. 118 222105
[21] Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L and Tucker M G 2008 Science 319 794
[22] Gao Q, Jiao Y and Li G 2021 Chin. Phys. B 31 046501
[23] Wu Y, Kobayashi A, Halder G J, Peterson V, Chapman K, Lock N, Southon P D and Kepert C 2008 Angew. Chem. Int. Ed. 47 8929
[24] Yuan X, Sun Y, Guo H, Shi K, Song P, Han H, Cui J, An S, Huang R, Li L and Wang C 2021 Mater. Design 203 109591
[25] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[26] Yokoyama T 2021 Microst. 1 2021003
[27] Song Y, Shi N, Deng S, Xing X and Chen J 2021 Prog. Mater. Sci. 121 100835
[28] Chen J, Xing X, Sun C, Hu P, Yu R, Wang X and Li L 2008 J. Am. Chem. Soc. 130 1144
[29] Azuma M, Chen W t, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y and Attfield J P 2011 Nat. Commun. 2 347
[30] Xu S, Hu Y, Liang Y, Shi C, Su Y, Guo J, Gao Q, Chao M and Liang E 2020 Chin. Phys. B 29 086501
[31] Chen J, Hu L, Deng J and Xing X 2015 Chem. Soc. Rev. 44 3522
[32] Liang E, Sun Q, Yuan H, Wang J, Zeng G and Gao Q 2021 Front. Phys. 16 53302
[33] Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J and Kowach G R 2014 Phys. Rev. Lett. 112 045505
[34] Li C W, Tang X, Muñoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[35] Gao Q, Wang J, Sanson A, Sun Q, Liang E, Xing X and Chen J 2020 J. Am. Chem. Soc. 142 6935
[36] Gao Q, Sun Q, Venier A, Sanson A , Huang Q, Jia Y, Liang E and Chen J 2022 Sci. China Mater. 65 553
[37] Gao Y, Wang C, Gao Q, Guo J, Chao M, Jia Y and Liang E 2020 Inorg. Chem. 59 18427
[38] Sanson A 2014 Chem. Mater. 26 3716
[39] Hibble S J, Chippindale A M, Marelli E, Kroeker S, Michaelis V K, Greer B J, Aguiar P M, Bilbé E J, Barney E R and Hannon A C 2013 J. Am. Chem. Soc. 135 16478
[40] Fang H, Dove M, Rimmer L and Misquitta A 2013 Phys. Rev. B 88 104306
[41] Küppers T, Bernhardt E, Willner H, Rohm H and Köckerling M 2005 Inorg. Chem. 44 1015
[42] Gao Q, Shi X, Venier A, Carnera A, Huang Q, Wu H, Chen J, Sanson A and Liang E 2020 Inorg. Chem. 59 14852
[43] Bernhardt E, Henkel G and Henkel H 2000 Z. Anorg. Allg. Chem. 626 560
[44] Salke N P, Gupta M K, Rao R, Mittal R, Deng J and Xing X 2015 J. Appl. Phys. 117 235902
[45] Mittal R, Chaplot S, Mishra S and Bose P 2007 Phys. Rev. B 75 174303
[46] Wang C, Chang D, Gao Q, Liu C, Wang Q, Huang X and Jia Y 2020 Phys. Chem. Chem. Phys. 22 18655
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[3] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[4] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[5] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[6] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[7] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[10] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[11] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[12] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[13] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[14] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[15] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
No Suggested Reading articles found!