CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study |
Ning Wei(魏宁)1, Ai-Qiang Shi(史爱强)1, Zhi-Hui Li(李志辉)2,3,†, Bing-Xian Ou(区炳显)4, Si-Han Zhao(赵思涵)1, and Jun-Hua Zhao(赵军华)1,‡ |
1 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China; 2 China Aerodynamics Research and Development Center, Mianyang 621000, China; 3 National Laboratory for Computational Fluid Dynamics, Beijing 100191, China; 4 National Graphene Products Quality Supervision and Inspection Center, Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Wuxi 214174, China |
|
|
Abstract The plastic deformation properties of cylindrical pre-void aluminum-magnesium (Al-Mg) alloy under uniaxial tension are explored using molecular dynamics simulations with embedded atom method (EAM) potential. The factors of Mg content, void size, and temperature are considered. The results show that the void fraction decreases with increasing Mg in the plastic deformation, and it is almost independent of Mg content when Mg is beyond 5%. Both Mg contents and stacking faults around the void affect the void growth. These phenomena are explained by the dislocation density of the sample and stacking faults distribution around the void. The variation trends of yield stress caused by void size are in good agreement with the Lubarda model. Moreover, temperature effects are explored, the yield stress and Young's modulus obviously decrease with temperature. Our results may enrich and facilitate the understanding of the plastic mechanism of Al-Mg with defects or other alloys.
|
Received: 10 November 2021
Revised: 09 December 2021
Accepted manuscript online: 12 January 2022
|
PACS:
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
61.72.Qq
|
(Microscopic defects (voids, inclusions, etc.))
|
|
61.66.Dk
|
(Alloys )
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11502217), the Fundamental Research Funds for the Central Universities (Grant Nos. 2452015054, 2452017122, and JUSRP121042), the China Postdoctoral Science Foundation (Grant Nos. 2015M570854 and 2016T90949), the Projects of the Manned Space Engineering Technology (Grant No. 2020-ZKZX-5011), Development of Large-Scale Spacecraft Flight and Reentry Surveillance and Prediction System, the Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education (NUAA) (Grant No. INMD-2019M08), and Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology (Grant Nos. FMZ202001 and FMZ202009). |
Corresponding Authors:
Zhi-Hui Li, Jun-Hua Zhao
E-mail: zhli0097@x263.net;junhua.zhao@163.com
|
Cite this article:
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华) Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study 2022 Chin. Phys. B 31 066203
|
[1] Zhao B, Xie L, Wang L, Hu Z, Zhou S and Bai X 2021 Int. J. Fatigue 143 105993 [2] Moreto J A, Marino C E B, Bose Filho W W, Rocha L A and Fernandes J C S 2014 Corrosion Sci. 84 30 [3] Engler O, Schäfer C and Brinkman H J 2012 Acta Mater. 60 5217 [4] Li J, Ye Z, Fu J, Qi W, Tian Y, Liu L and Wang X 2020 Mater. Charact. 160 110093 [5] Kim S J, Hyun K Y and Jang S K 2012 Curr. Appl. Phys. 12 S24 [6] Gupta S, Singh D, Yadav A, Jain S and Pratap B 2020 Mater. Today: Proc. 28 2358 [7] Starke E A and Staley J T 1996 Prog. Aerospace Sci. 32 131 [8] Li Y, Liu J, Zhang Q and Huang W 2021 Mater. Today Commun. 27 102416 [9] Xie C, Wu S, Yu Y, Zhang H, Hu Y, Zhang M and Wang G 2021 J. Mater. Process. Technol. 291 117039 [10] Zhang H K, Yao Z, Judge C and Griffiths M 2013 J. Nucl. Mater. 443 49 [11] Mo T, Chen Z, Zhou Z, Liu J, He W and Liu Q 2021 Mater. Sci. Engin. A 800 140313 [12] Yang Y, Tan P, Sui Y, Jiang Y and Zhou R 2021 J. Alloys Compd. 867 158920 [13] Wang H, Yi D, Liu H and Wang B 2021 Mater. Lett. 285 129199 [14] Ho P S and Kwok T 1989 Rep. Prog. Phys. 52 301 [15] Gungor M R, Maroudas D and Zhou S J 2000 Appl. Phys. Lett. 77 343 [16] Su Y and Xu S 2016 Mater. Sci. Engin. A 678 153 [17] Sills R B and Boyce B L 2019 Mater. Res. Lett. 8 103 [18] Kou Z, Yang Y, Yang L, Huang B and Luo X 2018 Mater. Sci. Engin. A 737 336 [19] Su M J, Deng Q, An M R and Liu L T 2020 Chin. Phys. B 29 116201 [20] Shang J, Yang F, Li C, Wei N and Tan X 2018 Comput. Mater. Sci. 148 200 [21] Guan Y L, Shao J L and Song W D 2020 Int. J. Mech. Sci. 181 105707 [22] Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W, Liao X, Chen L Q, Hagihara K, Li X, Ringer S and Ferry M 2021 Sci. Adv. 7 eabf3039 [23] Jing P, Yuan L, Shivpuri R, Xu C, Zhang Y, Shan D and Guo B 2018 Int. J. Plasticity 100 122 [24] Zhang L, Shibuta Y, Lu C and Huang X 2019 Acta Mater. 173 206 [25] Chen W, Zeng X, Chen L, Yang X and Wang F 2020 Mech. Mater. 141 103261 [26] Pogorelko V V and Mayer A E 2016 Mater. Sci. Engin. A 662 227 [27] Su M J, Deng Q, Liu L T, Chen L Y, Su M L and An M R 2021 Chin. Phys. B 30 096201 [28] Bahramyan M, Mousavian R T and Brabazon D 2016 Mater. Sci. Engin. A 674 82 [29] Qi Y, Chen X and Feng M 2020 Mater. Sci. Engin. A 791 139444 [30] Singh S K and Parashar A 2021 Mater. Chem. Phys. 266 124549 [31] Nitol M S, Adibi S, Barrett C D and Wilkerson J W 2020 Mech. Mater. 150 103588 [32] Ye Y J, Qin L, Li J, Liu L and Wu L K 2021 Chin. Phys. B 30 026801 [33] Liu X Y, Ohotnicky P P, Adams J B, Rohrer C L and Hyland R W 1997 Surf. Sci. 373 357 [34] Song H Y and Li Y L 2016 Comput. Mater. Sci. 111 125 [35] Plimpton S 1995 J. Comput. Phys. 117 1 [36] Stukowski A 2012 Model. Simulat. Mater. Sci. Engin. 20 045021 [37] Stukowski A 2013 JOM 66 399 [38] Stukowski A 2010Model. Simulat. Mater. Sci. Engin. 18 2154 [39] Choi B K, Yoon G H and Lee S 2016 Compos. Part B: Engin. 91 119 [40] Zhu J Q, Yang Q S and Liu X 2019 Key Engin. Mater. 804 1 [41] Chabba H, Lemaallem M, Derouiche A and Dafir D 2018 J. Mater. Environ. Sci. 9 93 [42] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393 [43] Mayer A E and Mayer P N 2015 JETP Lett. 102 80 [44] Zhang D and Picu R C 2004 Model. Simulat. Mater. Sci. Engin. 12 121 [45] Samiri A, Khmich A, Haouas H, Hassani A and Hasnaoui A 2020 Comput. Mater. Sci. 184 109895 [46] Kumar S and Das S K 2018 J. Alloys Compd. 740 626 [47] Du J P, Wang Y J, Lo Y C, Wan L and Ogata S 2016 Phys. Rev. B 94 104110 [48] Wang Y J, Ishii A and Ogata S 2013 Acta Mater. 61 3866 [49] Song H Y, Wang J Y, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 162 199 [50] Lubarda V A, Schneider M S, Kalantar D H, Remington B A and Meyers M A 2004 Acta Mater. 52 1397 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|