Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬)1, Yuhan Ye(耶郁晗)1, Zihao Huang(黄子豪)1, Xianghe Han(韩相和)1, Zhen Zhao(赵振)1, Haitao Yang(杨海涛)1,3, Hui Chen(陈辉)1,2,3,†, and Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract V-based kagome materials AV3Sb5 (A=K, Rb, Cs) have attracted much attention due to their novel properties such as unconventional superconductivity, giant anomalous Hall effect, charge density wave (CDW) and pair density wave. Except for the 2a0×2a0 CDW (charge density wave with in-plane 2×2 superlattice modulation) in AV3Sb5, an additional 1×4 (4a0) unidirectional stripe order has been observed at the Sb surface of RbV3Sb5 and CsV3Sb5. However, the stability and electronic nature of the 4a0 stripe order remain controversial and unclear. Here, by using low-temperature scanning tunneling microscopy/spectroscopy (STM/S), we systematically study the 4a0 stripe order on the Sb-terminated surface of CsV3Sb5. We find that the 4a0 stripe order is visible in a large energy range. The STM images with positive and negative bias show contrast inversion, which is the hallmark for the Peierls-type CDW. In addition, below the critical temperature about 60 K, the 4a0 stripe order keeps unaffected against the topmost Cs atoms, point defects, step edges and magnetic field up to 8 T. Our results provide experimental evidences on the existence of unidirectional CDW in CsV3Sb5.
Fund: This work was financially supported by the National Key Research and Development Project of China (Grant Nos.2018YFA0305800 and 2019YFA0308500),the National Natural Science Foundation of China (Grant Nos.61888102 and 52022105),the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB30000000 and XDB28000000),CAS Project for Young Scientists in Basic Research (Grant No.YSBR-003),and the University of Chinese Academy of Sciences.
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧) Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 058102
[1] Guo H M and Franz M 2009 Phys. Rev. B80 113102 [2] Mazin, II, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valenti R 2014 Nat. Commun.5 4261 [3] Bilitewski T and Moessner R 2018 Phys. Rev. B98 235109 [4] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys.89 025003 [5] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B82 075125 [6] Yu S L and Li J X 2012 Phys. Rev. B85 144402 [7] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B79 214502 [8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science365 1282 [9] Yin J X, Zhang S S, Chang G, et al. 2019 Nat. Phys.15 443 [10] Xing Y, Shen J, Chen H, et al. 2020 Nat. Commun.11 5613 [11] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature555 638 [12] Yin J X, Zhang S S, Li H, et al. 2018 Nature562 91 [13] Wang Q, Yin Q W and Lei H C 2020 Chin. Phys. B29 17101 [14] Nakatsuji S, Kiyohara N and Higo T 2015 Nature527 212 [15] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater.16 1090 [16] Xu C Q, Heitmann T W, Zhang H, Xu X and Ke X 2021 Phys. Rev. B104 024413 [17] Ma W, Xu X, Wang Z, Zhou H, Marshall M, Qu Z, Xie W and Jia S 2021 Phys. Rev. B103 235109 [18] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater.3 094407 [19] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett.125 247002 [20] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X11 031026 [21] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv.6 eabb6003 [22] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B104 L041103 [23] Yu F H, Wen X K, Gui Z G, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2022 Chin. Phys. B31 17405 [24] Chen H, Yang H, Hu B, et al. 2021 Nature599 222 [25] Yang H, Zhang Y, Huang Z, Zhao Z, Shi J, Qian G, Hu B, Lu Z, Zhang H, Shen C, Lin X, Wang Z, Pennycook S J, Chen H, Dong X, Zhou W and Gao H J 2021 arXiv:2110.11228 [26] Ni S, Ma S, Zhang Y, et al. 2021 Chin. Phys. Lett.38 057403 [27] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett.38 037403 [28] Park T, Ye M and Balents L 2021 Phys. Rev. B104 035142 [29] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett.127 217601 [30] Zhou X, Li Y, Fan X, Hao J, Dai Y, Wang Z, Yao Y and Wen H H 2021 Phys. Rev. B104 L041101 [31] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature599 216 [32] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X11 031050 [33] Shumiya N, Hossain M S, Yin J X, et al. 2021 Phys. Rev. B104 035131 [34] Wang Z, Jiang Y X, Yin J X, et al. 2021 Phys. Rev. B104 075148 [35] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett.127 046401 [36] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater.20 1353 [37] Mu C, Yin Q, Tu Z, Gong C, Zheng P, Lei H, Li Z and Luo J 2022 Chin. Phys. B31 17105 [38] Du F, Luo S, Li R, Ortiz B R, Chen Y, Wilson S D, Song Y and Yuan H 2022 Chin. Phys. B31 17404 [39] Ratcliff N, Hallett L, Ortiz B R, Wilson S D and Harter J W 2021 Phys. Rev. Mater.5 L111801 [40] Li H, Jiang Y X, Yin J X, Yoon S, Lupini A R, Pai Y, Nelson C, Said A, Yang Y M, Yin Q W, Gong C S, Tu Z J, Lei H C, Yan B, Wang Z, Hasan M Z, Lee H N and Miao H 2021 arXiv:2109.03418 [41] Mallet P, Zimmermann K M, Chevalier P, Marcus J, Veuillen J Y and Rodriguez J M G 1999 Phys. Rev. B60 2122 [42] Dai J, Calleja E, Alldredge J, Zhu X, Li L, Lu W, Sun Y, Wolf T, Berger H and McElroy K 2014 Phys. Rev. B89 165140 [43] Hall J, Ehlen N, Berges J, van Loon E, van Efferen C, Murray C, Rösner M, Li J, Senkovskiy B V, Hell M, Rolf M, Heider T, Asensio M C, Avila J, Plucinski L, Wehling T, Grüneis A and Michely T 2019 ACS Nano13 10210 [44] Spera M, Scarfato A, Pásztor á, Giannini E, Bowler D R and Renner C 2020 Phys. Rev. Lett.125 267603 [45] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull.66 1384 [46] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y and Wen H H 2021 Nat. Commun.12 6727 [47] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys.18 265 [48] Yu L, Wang C, Zhang Y, et al. 2021 arXiv:2107.10714
[1]
Selective formation of ultrathin PbSe on Ag(111) Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.