Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057305    DOI: 10.1088/1674-1056/ac3baa

Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties

Ying Su(苏影)1, Dong-Yang Zhu(朱东阳)1,†, Ting-Ting Zhang(张亭亭)1, Yu-Rui Zhang(张玉瑞)1, Wen-Peng Han(韩文鹏)1, Jun Zhang(张俊)1, Seeram Ramakrishna2, and Yun-Ze Long(龙云泽)1,3,‡
1 Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China;
2 Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore;
3 Collaborative Innovation Center for Eco-Textiles of Shandong Province, and State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
Abstract  Pr0.5Sr0.5FeO3 (PSFO) and La0.25Pr0.25Sr0.5FeO3 (LPSFO) nanofibers are prepared by electrospinning followed by calcination, and their morphologies, microstructures, electronic transports, and magnetic properties are studied systematically. The temperature-dependent resistance curves of PSFO and LPSFO nanofibers are measured in a temperature range from 300 K to 10 K. With the temperature lowering, the resistance increases gradually and then decreases sharply due to the occurrence of ferromagnetic metal phase. The metal-insulator transition temperatures are about 110 K and 180 K for PSFO and LPSFO nanofibers, respectively. The electronic conduction behavior above the transition temperature can be described by one-dimensional Mott's variable-range hopping (VRH) model. The hysteresis loops and the field-cooled (FC) and zero-field-cooled (ZFC) curves show that both PSFO nanofiber and LPSFO nanofiber exhibit ferromagnetism. Although the doping of La reduces the overall magnetization intensity of the material, it increases the ferromagnetic ratio of the system, which may improve the performance of LPSFO in solid oxide fuel cell.
Keywords:  Pr0.5Sr0.5FeO3      La0.25Pr0.25Sr0.5FeO3      electrospinning      electronic transport      magnetic properties  
Received:  23 September 2021      Revised:  15 November 2021      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.75.-c (Magnetic properties of nanostructures)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51973100 and 11904193),the Fund from the State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University,China (Grant No.RZ2000003334),and the National Key Research and Development Project,China (Grant No.2019YFC0121402).
Corresponding Authors:  Yun-Ze Long,,     E-mail:,
About author:  2021-11-20

Cite this article: 

Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽) Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties 2022 Chin. Phys. B 31 057305

[1] Yang Z G G, Stevenson J W and Singh P 2003 Adv. Mater. Process 161 34
[2] Lu J B, Zhang Z T and Tang Z L 2005 Rare Metal Mat. Eng. 34 1177
[3] Lenka R K, Patro P K, Patel V, Muhmood L and Mahata T 2021 J. Alloys Compd. 860 158490
[4] Hu X, Xie Y, Wan Y, Yang Y, Wu X and Xia C 2021 Appl. Catal. B-Environ. 286 119901
[5] Vivanpatarakij S, Assabumrungrat S and Laosiripojana N 2007 J. Power Sources 167 139
[6] Steele B C H and Heinzel A 2001 Nature 414 345
[7] Strazza C, Del Borghi A, Costamagna P, Gallo M, Brignole E and Girdinio P 2015 Energ. Convers. Manage. 100 64
[8] Pelegrini L, Rodrigues Neto J B and Hotza D 2016 Rev. Adv. Mater. Sci. 46 6
[9] Reddy A A, Tulyaganov D U, Kharton V V and Ferreira J M F 2015 J. Solid State Electr. 19 2899
[10] Lyu Y, Wang F, Wang D and Jin Z 2020 Mater. Technol. 35 212
[11] Lee Y H, Chang I, Cho G Y, Park J, Yu W, Tanveer W H and Cha S W 2018 Int. J. Precis Eng Manuf-Green Technol. 5 441
[12] Benamira M, Ringuede A, Hildebrandt L, Lagergren C, Vannier R N and Cassir M 2012 Int. J. Hydrogen Energy 37 19371
[13] Zhu B 2009 Int. J. Energ. Res. 33 1126
[14] Timurkutluk B, Timurkutluk C, Mat M D and Kaplan Y 2011 Int. J. Energ. Res. 35 1048
[15] Ozmen O, Zondlo J W, Lee S, Gerdes K and Sabolsky E M 2016 Mater. Lett. 164 524
[16] Ziemann P and Khokhlov A R 2013 Beilstein J. Nanotech. 4 678
[17] Yu F and Di L 2020 Nanomaterials 10 333
[18] Chen C, Fan Y, Gu J, Wu L, Passerini S and Mai L 2018 J. Phys. D: Appl. Phys. 51 113002
[19] Shao H 2017 Energies 10 1767
[20] Nesaraj A S 2010 J. Sci. Ind. Res. 69 169
[21] Ishihara T 2016 J. Korean Ceram. Soc. 53 469
[22] Hao S J, Wang C, Liu T L, Mao Z M, Mao Z Q and Wang J L 2017 Int. J. Hydrogen Energ. 42 29949
[23] Fan L, Zhu B, Su P C and He C 2018 Nano Energy 45 148
[24] Fabbri E, Bi L, Pergolesi D and Traversa E 2012 Adv. Mater. 24 195
[25] Medvedev D A, Lyagaeva J G, Gorbova E V, Demin A K and Tsiakaras P 2016 Prog. Mater. Sci. 75 38
[26] Hossain S, Abdalla A M, Jamain S N B, Zaini J H and Azad A K 2017 Renew. Sust. Energ. Rev. 79 750
[27] Zhu Z, Guo E, Wei Z and Wang H 2018 J. Power Sources 373 132
[28] Shimada H, Yamaguchi T, Sumi H, Yamaguchi Y, Nomura K and Fujishiro Y 2018 Ceram. Int. 44 3134
[29] Huan D, Shi N, Zhang L, Tan W, Wang W, Xia C, Peng R and Lu Y 2018 ACS Appl. Mater. Interfaces 10 1761
[30] Wang B, Bi L and Zhao X S 2018 Ceram. Int. 44 5139
[31] Chen Y, Yoo S, Pei K, Chen D, Zhang L, et al. 2018 Adv. Funct. Mater. 28 1704907
[32] Choi S, Kucharczyk C J, Liang Y G, Zhang X H, Takeuchi I, Ji H I and Haile S M 2018 Nat. Energy 3 202
[33] Hou J, Miao L, Hui J, Bi L, Liu W and Irvine J T S 2018 J. Mater. Chem. A 6 10411
[34] Yamaura H, Ikuta T, Yahiro H and Okada G 2005 Solid State Ionics 176 269
[35] Sun W, Zhu Z, Jiang Y, Shi Z, Yan L and Liu W 2011 Int. J. Hydrogen Energy 36 9956
[36] Peng R, Wu T, Liu W, Liu X and Meng G 2010 J. Mater. Chem. 20 6218
[37] Fabbri E, Bi L, Tanaka H, Pergolesi D and Traversa E 2011 Adv. Funct. Mater. 21 158
[38] Grimaud A, Mauvy F, Bassat J M, Fourcade S, Rocheron L, Marrony M and Grenier J C 2012 J. Electrochem. Soc. 159 B683
[39] Ma J, Tao Z, Kou H, Fronzi M and Bi L 2020 Ceram. Int. 46 4000
[40] Nowik I F I and Awana V P S 1999 J. Magn. Magn. Mater. 192 67
[41] Zhu W, He J, Ti R, Jin Y, Xu T, Yue C, Huang F, Lu X and Zhu J 2014 Phys. Status Solidi A 211 2833
[42] Chen C C, Xu Z C and Ying X N 2016 Solid State Commun. 228 27
[43] Brinks H W, Fjellvag H, Kjekshus A and Hauback B C 2000 J. Solid State Chem. 150 233
[44] Stange M, Linden J, Kjekshus A, Binsted N, Weller M T, Hauback B C and Fjellvag H 2003 J. Solid State Chem. 173 148
[1] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[2] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[6] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[7] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[8] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[11] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[12] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[13] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[14] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[15] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
No Suggested Reading articles found!