Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057304    DOI: 10.1088/1674-1056/ac5c32
RAPID COMMUNICATION Prev   Next  

Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal

Mingqi Chang(苌名起)1, Yunfeng Ge(葛云凤)1, and Li Sheng(盛利)1,2,†
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The quantum Hall effect (QHE), which is usually observed in two-dimensional systems, was predicted theoretically and observed experimentally in three-dimensional (3D) topological semimetal. However, there are some inconsistencies between the theory and the experiments showing the theory is imperfect. Here, we generalize the theory of the 3D QHE of Fermi arcs in Weyl semimetal. Through calculating the sheet Hall conductivity of a Weyl semimetal slab, we show that the 3D QHE of Fermi arcs can occur in a large energy range and the thickness dependences of the QHE in different Fermi energies are distinct. When the Fermi energy is near the Weyl nodes, the Fermi arcs give rise to the QHE which is independent of the thickness of the slab. When the Fermi energy is not near the Weyl nodes, the two Fermi arcs form a complete Fermi loop with the assistance of bulk states giving rise to the QHE which is dependent on the sample thickness. We also demonstrate how the band anisotropic terms influence the QHE of Fermi arcs. Our theory complements the imperfections of the present theory of 3D QHE of Fermi arcs.
Keywords:  Weyl semimetal      three-dimensional quantum Hall effect      Fermi arcs  
Received:  27 December 2021      Revised:  16 February 2022      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.50.-h (Electronic transport phenomena in thin films)  
  73.43.-f (Quantum Hall effects)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11974168)(L.S.).
Corresponding Authors:  Li Sheng,E-mail:shengli@nju.edu.cn     E-mail:  shengli@nju.edu.cn
About author:  2022-3-10

Cite this article: 

Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利) Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal 2022 Chin. Phys. B 31 057304

[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[4] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Nagaosa N, Kawasaki M and Tokura Y 2015 Nat. Commun. 6 8530
[5] Thouless D J, Kohmoto M, Nightingale M P and denNijs M 1982 Phys. Rev. Lett. 49 405
[6] Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913
[7] Kohmoto M, Halperin B I and Wu Y S 1992 Phys. Rev. B 45 13488
[8] Koshino M, Aoki H, Kuroki K, Kagoshima S and Osada T 2001 Phys. Rev. Lett. 86 1062
[9] Bernevig B A, Hughes T L, Raghu S and Arovas D P 2007 Phys. Rev. Lett. 99 146804
[10] Störmer H, Eisenstein J, Gossard A, Wiegmann W and Baldwin K 1986 Phys. Rev. Lett. 56 85
[11] Wang P, Ren Y, Tang F, Wang P, Hou T, Zeng H, Zhang L and Qiao Z 2020 Phys. Rev. B 101 161201(R)
[12] Qin F, Li S, Du Z, Wang C, Zhang W, Yu D, Lu H Z and Xie X C 2020 Phys. Rev. Lett. 125 206601
[13] Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, et al. 2019 Nature 569 537
[14] Chen Rui, Wang C M, Liu Tianyu, Lu H Z and Xie X C 2021 Phys. Rev. Research 3 033227
[15] Ma R, Sheng D and Sheng L 2021 Phys. Rev. B 104 075425
[16] Wang C M, Sun H P, Lu H Z and Xie X C 2017 Phys. Rev. Lett. 119 136806
[17] Lu H Z 2019 National Science Review 6 208
[18] Chen Rui, Liu Tianyu, Wang C M, Lu H Z and Xie X C 2021 Phys. Rev. Lett. 127 066801
[19] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[20] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[21] Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129
[22] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[23] Delplace P, Li J and Carpentier D 2012 Europhys. Lett. 97 67004
[24] Jiang J H 2012 Phys. Rev. A 85 033640
[25] Singh B, Sharma A, Lin H, Hasan M, Prasad R and Bansil A 2012 Phys. Rev. B 86 115208
[26] Liu J and Vanderbilt D 2014 Phys. Rev. B 90 155316
[27] Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106(R)
[28] Armitage N, Mele E and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[29] Zhang C, Narayan A, Lu S, Zhang J, Zhang H, Ni Z, Yuan X, Liu Y, Park J H, Zhang E, et al. 2017 Nat. Commun. 8 1272
[30] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R, et al. 2019 Nature 565 331
[31] Nishihaya S, Uchida M, Nakazawa Y, Kriener M, Kozuka Y, Taguchi Y and Kawasaki M 2018 Sci. Adv. 4 eaar5668
[32] Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N, et al. 2017 Nat. Commun. 8 2274
[33] Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M and Stemmer S 2018 Phys. Rev. Lett. 120 016801
[34] Kealhofer D A, Galletti L, Schumann T, Suslov A and Stemmer S 2020 Phys. Rev. X 10 011050
[35] Lin B C, Wang S, Wiedmann S, Lu J M, Zheng W Z, Yu D and Liao Z M 2019 Phys. Rev. Lett. 122 036602
[36] Zhang S B, Lu H Z and Shen S Q 2016 New J. Phys. 18 053039
[37] Shen S Q 2012 Topological Insulators (Berlin Heidelberg: Springer-Verlag)
[38] Sun H P and Lu H Z 2019 Frontiers of Physics 14 33405
[39] Okugawa R and Murakami S 2014 Phys. Rev. B 89 235315
[40] Lu H Z, Zhang S B and Shen S Q 2015 Phys. Rev. B 92 045203
[41] Chang M and Sheng L 2021 Phys. Rev. B 103 245409
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[6] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[7] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[8] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[9] Crystal structure and electromagnetic responses of tetragonal GdAlGe
Cong Wang(王聪), Yong-Quan Guo(郭永权), Tai Wang(王泰), and Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2020, 29(12): 127502.
[10] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[11] Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators
Junwei Liu(刘军伟), Chen Fang(方辰), Liang Fu(傅亮). Chin. Phys. B, 2019, 28(4): 047301.
[12] Giant enhancement of superconductivity in few layers MoTe2
Yuan Gan(甘远), Chang-Woo Cho, Alei Li(李阿蕾), Jian Lyu(吕坚), Xu Du(杜序), Jin-Sheng Wen(温锦生), Li-Yuan Zhang(张立源). Chin. Phys. B, 2019, 28(11): 117401.
[13] Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology
Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰). Chin. Phys. B, 2018, 27(9): 097103.
[14] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[15] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
No Suggested Reading articles found!