Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054207    DOI: 10.1088/1674-1056/ac46c0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface

Min Zhong(仲敏) and Jiu-Sheng Li(李九生)
Center for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  We propose a novel metasurface based on a combined pattern of outer C-shaped ring and inner rectangular ring. By Fourier convolution operation to generating different predesigned sequences of metasurfaces, we realize various functionalities to flexible manipulate terahertz waves including vortex terahertz beam splitting, anomalous vortex terahertz wave deflection, vortex terahertz wave splitting and deflection simultaneously. The incident terahertz wave can be flexibly controlled in a single metasurface. The designed metasurface has an extensive application prospect in the field of future terahertz communication and sensing.
Keywords:  Fourier convolution operation metasurface      terahertz wave      flexible manipulation  
Received:  25 October 2021      Revised:  11 December 2021      Accepted manuscript online: 
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61871355 and 61831012),the Talent Project of Zhejiang Provincial Department of Science and Technology (Grant No.2018R52043),and the Research Funds for Universities of Zhejiang Province,China (Grant Nos.2020YW20 and 2021YW86).
Corresponding Authors:  Jiu-Sheng Li,E-mail:lijsh2008@126.com     E-mail:  lijsh2008@126.com
About author:  2021-12-29

Cite this article: 

Min Zhong(仲敏) and Jiu-Sheng Li(李九生) Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface 2022 Chin. Phys. B 31 054207

[1] Chen M, Sun W, Cai J J, Chang L Z and Xiao X F 2017 Opt. Commun. 382 144
[2] Liu Z and Bai B 2017 Opt. Express 25 8584
[3] Zhao J C, Cheng Y Z and Cheng Z Z 2018 IEEE Photon. J. 10 4600210
[4] Ding F, Zhong S M and Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204
[5] Wang T, He J W, Guo J Y, Wang X, Feng S F, Kuhl F, Becker M, Polity A, Klar P J and Zhang Y 2019 Opt. Express 27 20347
[6] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light: Sci. Appl. 3 e218
[7] Feng M C, Li Y F, Zheng Q Q, Zhang J Q, Han Y J, Wang J F, Chen H Y, Sai S, Ma and Qu S B 2018 J. Phys. D: Appl. Phys. 51 375103
[8] Shao L, Premaraten M and Zhu W R 2019 IEEE Access 7 45716
[9] Saifullah Y, Waqas A B, Yang G M and Xu F 2020 Opt. Express 28 1139
[10] Yang J J, Cheng Y Z, Qi D and Gong R Z 2018 Appl. Sci. 8 1231
[11] Cui T J, Liu S and Zhang L 2017 J. Mater. Chem. C 5 3644
[12] Yang S, Guan C S, Ding X M, Zhang K, Burokur S N and Wu Q 2021 Photonics 8 174
[13] Han X M, Xu H J, Chang Y P, Lin M, Zhang W Y, Wu X and Wei X L 2020 IEEE Access 8 162313
[14] Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y and Cheng Q 2016 Adv. Sci. 3 1600156
[15] Zhao Y F, Yao Y, Xu K, Yang Y and Tian J J 2020 Opt. Commun. 475 126165
[16] Xiong X W, Zheng S L, Zhu Z L, Wang Z X, Chen Y Q, Yu X B and Zhang X M 2020 IEEE Commun. Lett. 24 2628
[17] Zhu C J, Song M Z and Dang X Y 2020 Radioengineering 29 563
[18] Jiang X, Ta D and Wang W Q 2020 Phys. Rev. Appl. 14 034014
[19] Iqbal S, Akram M R, Furqan M, Madni H A, Khan M I and Shu G X 2020 IEEE Access 8 197982
[20] Zhang C, Xu P F and Jiang X F 2020 AIP Adv. 10 105230
[21] Shi Y, Wu Q W and Ming J 2021 IEEE Access 9 63122
[22] Feng H, Ye L F, Zhang Y Y, Li W W, Chen H Y and Liu Q H 2020 Appl. Phys. Lett. 117 241601
[23] Liu B, He Y J, Wong S W and Li Y 2020 Adv. Opt. Mater. 9 2001689
[24] Ge Y F, Wu Y P, Zang X F, Yuan Y H and Chen L 2020 Acta Phys. Sin. 69 184203 (in Chinese)
[25] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M and Zhuang S L 2019 Front. Inform. Technol. Elect. Eng. 20 591
[1] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[2] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[3] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[4] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[5] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[6] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[7] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[8] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[9] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[10] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[11] Ultra-compact terahertz switch with graphene ring resonators
Jian-Zhong Sun(孙建忠), Le Zhang(章乐), Fei Gao(高飞). Chin. Phys. B, 2016, 25(10): 108701.
[12] Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss
Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2015, 24(6): 068702.
[13] Realization of a broadband terahertz wavelength-selective coupling based on five-core fibers
Li Xu-You (李绪友), Yu Ying-Ying (于莹莹), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2014, 23(8): 088701.
[14] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
[15] Low-loss terahertz waveguide with InAs-graphene-SiC structure
Xu De-Gang (徐德刚), Wang Yu-Ye (王与烨), Yu Hong (于红), Li Jia-Qi (李佳起), Li Zhong-Xiao (李忠孝), Yan Chao (闫超), Zhang Hao (张昊), Liu Peng-Xiang (刘鹏翔), Zhong Kai (钟凯), Wang Wei-Peng (王卫鹏), Yao Jian-Quan (姚建铨). Chin. Phys. B, 2014, 23(5): 054210.
No Suggested Reading articles found!