Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054206    DOI: 10.1088/1674-1056/ac3ecc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system

Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举)
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  We study the nonreciprocal properties of transmitted photons in a chiral waveguide quantum electrodynamics (QED) system, including single- and two-photon transmissions and second-order correlations. For the single-photon transmission, the nonreciprocity is induced by the effects of chiral coupling and atomic dissipation in the weak coupling region. It vanishes in the strong coupling regime when the effect of atomic dissipation becomes ignorable. In the case of two-photon transmission, there exist two ways of going through the emitter: independently as plane waves and formation of bound state. Besides the nonreciprocal behavior of plane waves, the bound state that differs in two directions also alters transmission probabilities. In addition, the second-order correlation of transmitted photons depends on the interference between plane wave and bound state. The destructive interference leads to the strong antibunching in the weak coupling region, while the effective formation of bound state leads to the strong bunching in the intermediate coupling region. However, the negligible interactions for left-propagating photons hardly change the statistics of the input coherent state.
Keywords:  chiral waveguide QED      nonreciprocal transmissions      nonreciprocal correlations  
Received:  27 September 2021      Revised:  24 November 2021      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11704045).
Corresponding Authors:  Wen-Ju Gu,E-mail:guwenju@yangtzeu.edu.cn     E-mail:  guwenju@yangtzeu.edu.cn
About author:  2021-12-1

Cite this article: 

Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举) Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system 2022 Chin. Phys. B 31 054206

[1] Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S and Lodahl P 2015 Nat. Nanotechnol. 10 775
[2] Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S and Twamley J 2014 Phys. Rev. A 90 043802
[3] Scheucher M, Hilico A, Will E, Volz J and Rauschenbeutel A 2016 Science 354 1577
[4] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473
[5] Petersen J, Volz J and Rauschenbeutel A 2014 Science 346 67
[6] Abujetas D R and Sánchez-Gil J A 2020 ACS Photon. 7 534
[7] Jones R, Buonaiuto G, Lang B, Lesanovsky I and Olmos B 2020 Phys. Rev. Lett. 124 093601
[8] Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. Atom. Mol. Opt. Phys. 66 439
[9] Bliokh K Y, Rodríguez-Fortuño F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796
[10] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579
[11] Metelmann A and Clerk A A 2015 Phys. Rev. X 5 021025
[12] Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J and Nunnenkamp A 2015 Phys. Rev. Lett. 120 023601
[13] Kamal A and Metelmann A 2017 Phys. Rev. Appl. 7 034031
[14] Wang X, Shui T, Li L, Li X, Wu Z and Yang W X 2020 Laser Phys. Lett. 17 065201
[15] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204
[16] Wang J 2020 Chin. Phys. B 29 034210
[17] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[18] Xu X W, Li Y, Li B, Jing H and Chen A X 2020 Phys. Rev. Appl. 13 044070
[19] Li B, Huang R, Xu X W, Miranowicz A and Jing H 2019 Photon. Res. 7 630
[20] Shen H Z, Wang Q, Wang J and Yi X X 2020 Phys. Rev. A 101 013826
[21] Metelmann A and Türeci H E 2018 Phys. Rev. A 97 043833
[22] Wang X, Wu Z, Li L, Li X and Yang W X 2021 Laser Phys. Lett. 18 035204
[23] Yan W B and Zhang F Y 2021 Quantum Inf. Process. 20 16
[24] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605
[25] Zhou B Y, Liu Y, Tan H and Li G X 2021 Phys. Rev. A 104 022402
[26] Zhang F Y and Yang C P 2021 Quantum Sci. Technol. 6 025003
[27] Aplet L J and Carson J W 1964 Appl. Opt. 3 544
[28] Yu G X, Fu J J, Du W W, Lv Y H and Luo M 2019 Chin. Phys. B 28 024101
[29] Sounas D L and Alú A 2017 Nat. Photon. 11 774
[30] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
[31] Kamal A, Roy A, Clarke J and Devoret M H 2014 Phys. Rev. Lett. 113 247003
[32] Tzuang L D, Fang K, Nussenzveig P, Fan S and Lipson M 2014 Nat. Photon. 8 701
[33] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473
[34] Junge C, O'shea D, Volz J and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 213604
[35] Sayrin C, Junge C, Mitsch R, Albrecht B, O'shea D, Schneeweiss P, Volz J and Rauschenbeutel A 2015 Phys. Rev. X 5 041036
[36] Shi C, Cheng M T, Ma X S, Wang D, Hang X, Wang B and Zhang J Y 2018 Chin. Phys. Lett. 35 054202
[37] Coles R J, Price D M, Dixon J E, Royall B, Clarke E, Kok P, Skolnich M S, Fox A M and Makhonin M N 2016 Nat. Commun. 7 11183
[38] Lang B, Beggs D M, Young A B, Rarity J G and Oulton R 2015 Phys. Rev. A 92 063819
[39] Xiao S, Wu S, Xie X, Yang J, Wei W, Shi S, Song F, Sun S, Dang J, Yang L, Wang Y, Zuo Z, Wang T, Zhang J and Xu X 2021 Appl. Phys. Lett. 118 091106
[40] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[41] Zheng H, Gauthier D J and Baranger H U 2010 Phys. Rev. A 82 063816
[42] Shen J T and Fan S 2007 Phys. Rev. Lett. 98 153003
[43] Shen J T and Fan S 2007 Phys. Rev. A 76 062709
[44] Pletyukhov M and Gritsev V 2012 New J. Phys. 14 095028
[45] Fan S, Kocabaş S E and Shen J T 2010 Phys. Rev. A 82 063821
[46] Rephaeli E, Kocabaş S E and Fan S 2011 Phys. Rev. A 84 063832
[47] Rephaeli E and Fan S 2013 Photon. Res. 1 110
[48] Xu S and Fan S 2015 Phys. Rev. A 91 043845
[49] Roy D 2011 Phys. Rev. A 83 043823
[50] Shi T and Sun C P 2009 Phys. Rev. B 79 205111
[51] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 021001
[52] Caneva T, Manzoni M T, Shi T, Douglas J S, Cirac J I and Chang D E 2015 New J. Phys. 17 113001
[53] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[54] Vetsch E, Dawkins S T, Mitsch R, Reitz D, Schneeweiss P and Rauschenbeutel A 2012 IEEE J. Sel. Top. Quantum Electron. 18 1763
[55] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[56] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
[57] Sakurai J J 1994 Modern Quantum Mechanics (New York: Addison-Wesley) p. 390
[58] Loudon R 2000 The Quantum Theory of Light, 3rd edn. (New York: Oxford University Press) p. 245
[59] Yan W B, Ni W Y, Zhang J, Zhang F Y and Fan H 2018 Phys. Rev. A 98 043852
[60] Baragiola B Q, Cook R L, Brańczyk A M and Combes J 2012 Phys. Rev. A 86 013811
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[9] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[10] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[11] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[12] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[13] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[14] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[15] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
No Suggested Reading articles found!