ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system |
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举)† |
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China |
|
|
Abstract We study the nonreciprocal properties of transmitted photons in a chiral waveguide quantum electrodynamics (QED) system, including single- and two-photon transmissions and second-order correlations. For the single-photon transmission, the nonreciprocity is induced by the effects of chiral coupling and atomic dissipation in the weak coupling region. It vanishes in the strong coupling regime when the effect of atomic dissipation becomes ignorable. In the case of two-photon transmission, there exist two ways of going through the emitter: independently as plane waves and formation of bound state. Besides the nonreciprocal behavior of plane waves, the bound state that differs in two directions also alters transmission probabilities. In addition, the second-order correlation of transmitted photons depends on the interference between plane wave and bound state. The destructive interference leads to the strong antibunching in the weak coupling region, while the effective formation of bound state leads to the strong bunching in the intermediate coupling region. However, the negligible interactions for left-propagating photons hardly change the statistics of the input coherent state.
|
Received: 27 September 2021
Revised: 24 November 2021
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11704045). |
Corresponding Authors:
Wen-Ju Gu,E-mail:guwenju@yangtzeu.edu.cn
E-mail: guwenju@yangtzeu.edu.cn
|
About author: 2021-12-1 |
Cite this article:
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举) Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system 2022 Chin. Phys. B 31 054206
|
[1] Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S and Lodahl P 2015 Nat. Nanotechnol. 10 775 [2] Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S and Twamley J 2014 Phys. Rev. A 90 043802 [3] Scheucher M, Hilico A, Will E, Volz J and Rauschenbeutel A 2016 Science 354 1577 [4] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473 [5] Petersen J, Volz J and Rauschenbeutel A 2014 Science 346 67 [6] Abujetas D R and Sánchez-Gil J A 2020 ACS Photon. 7 534 [7] Jones R, Buonaiuto G, Lang B, Lesanovsky I and Olmos B 2020 Phys. Rev. Lett. 124 093601 [8] Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. Atom. Mol. Opt. Phys. 66 439 [9] Bliokh K Y, Rodríguez-Fortuño F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796 [10] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579 [11] Metelmann A and Clerk A A 2015 Phys. Rev. X 5 021025 [12] Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J and Nunnenkamp A 2015 Phys. Rev. Lett. 120 023601 [13] Kamal A and Metelmann A 2017 Phys. Rev. Appl. 7 034031 [14] Wang X, Shui T, Li L, Li X, Wu Z and Yang W X 2020 Laser Phys. Lett. 17 065201 [15] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204 [16] Wang J 2020 Chin. Phys. B 29 034210 [17] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 [18] Xu X W, Li Y, Li B, Jing H and Chen A X 2020 Phys. Rev. Appl. 13 044070 [19] Li B, Huang R, Xu X W, Miranowicz A and Jing H 2019 Photon. Res. 7 630 [20] Shen H Z, Wang Q, Wang J and Yi X X 2020 Phys. Rev. A 101 013826 [21] Metelmann A and Türeci H E 2018 Phys. Rev. A 97 043833 [22] Wang X, Wu Z, Li L, Li X and Yang W X 2021 Laser Phys. Lett. 18 035204 [23] Yan W B and Zhang F Y 2021 Quantum Inf. Process. 20 16 [24] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605 [25] Zhou B Y, Liu Y, Tan H and Li G X 2021 Phys. Rev. A 104 022402 [26] Zhang F Y and Yang C P 2021 Quantum Sci. Technol. 6 025003 [27] Aplet L J and Carson J W 1964 Appl. Opt. 3 544 [28] Yu G X, Fu J J, Du W W, Lv Y H and Luo M 2019 Chin. Phys. B 28 024101 [29] Sounas D L and Alú A 2017 Nat. Photon. 11 774 [30] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447 [31] Kamal A, Roy A, Clarke J and Devoret M H 2014 Phys. Rev. Lett. 113 247003 [32] Tzuang L D, Fang K, Nussenzveig P, Fan S and Lipson M 2014 Nat. Photon. 8 701 [33] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473 [34] Junge C, O'shea D, Volz J and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 213604 [35] Sayrin C, Junge C, Mitsch R, Albrecht B, O'shea D, Schneeweiss P, Volz J and Rauschenbeutel A 2015 Phys. Rev. X 5 041036 [36] Shi C, Cheng M T, Ma X S, Wang D, Hang X, Wang B and Zhang J Y 2018 Chin. Phys. Lett. 35 054202 [37] Coles R J, Price D M, Dixon J E, Royall B, Clarke E, Kok P, Skolnich M S, Fox A M and Makhonin M N 2016 Nat. Commun. 7 11183 [38] Lang B, Beggs D M, Young A B, Rarity J G and Oulton R 2015 Phys. Rev. A 92 063819 [39] Xiao S, Wu S, Xie X, Yang J, Wei W, Shi S, Song F, Sun S, Dang J, Yang L, Wang Y, Zuo Z, Wang T, Zhang J and Xu X 2021 Appl. Phys. Lett. 118 091106 [40] Shen J T and Fan S 2009 Phys. Rev. A 79 023837 [41] Zheng H, Gauthier D J and Baranger H U 2010 Phys. Rev. A 82 063816 [42] Shen J T and Fan S 2007 Phys. Rev. Lett. 98 153003 [43] Shen J T and Fan S 2007 Phys. Rev. A 76 062709 [44] Pletyukhov M and Gritsev V 2012 New J. Phys. 14 095028 [45] Fan S, Kocabaş S E and Shen J T 2010 Phys. Rev. A 82 063821 [46] Rephaeli E, Kocabaş S E and Fan S 2011 Phys. Rev. A 84 063832 [47] Rephaeli E and Fan S 2013 Photon. Res. 1 110 [48] Xu S and Fan S 2015 Phys. Rev. A 91 043845 [49] Roy D 2011 Phys. Rev. A 83 043823 [50] Shi T and Sun C P 2009 Phys. Rev. B 79 205111 [51] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 021001 [52] Caneva T, Manzoni M T, Shi T, Douglas J S, Cirac J I and Chang D E 2015 New J. Phys. 17 113001 [53] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603 [54] Vetsch E, Dawkins S T, Mitsch R, Reitz D, Schneeweiss P and Rauschenbeutel A 2012 IEEE J. Sel. Top. Quantum Electron. 18 1763 [55] Shen J T and Fan S 2005 Opt. Lett. 30 2001 [56] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001 [57] Sakurai J J 1994 Modern Quantum Mechanics (New York: Addison-Wesley) p. 390 [58] Loudon R 2000 The Quantum Theory of Light, 3rd edn. (New York: Oxford University Press) p. 245 [59] Yan W B, Ni W Y, Zhang J, Zhang F Y and Fan H 2018 Phys. Rev. A 98 043852 [60] Baragiola B Q, Cook R L, Brańczyk A M and Combes J 2012 Phys. Rev. A 86 013811 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|