Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054208    DOI: 10.1088/1674-1056/ac447f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser

Zexin Song(宋泽鑫)1,2,3, Qi Bian(卞奇)1,2,†, Yu Shen(申玉)1,2,‡, Keling Gong(龚柯菱)1,2, Nan Zong(宗楠)1,2, Qingshuang Zong(宗庆霜)4, Yong Bo(薄勇)1,2, and Qinjun Peng(彭钦军)1,2
1 Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100190, China;
4 Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract  The influence of pumping laser pulse on the property of quasi-continuous-wave (QCW) diode-side-pumped Nd:YAG laser is investigated theoretically and experimentally. Under remaining a fixed duty cycle, the average output power increases, and the corresponding thermal focal length shorten with the increase of the pump pulse duration, which attributes to the decrease of the ratio of pulse buildup time to the pulse duration. At a pump power of 146 W, the laser output power changes from 65.1 W to 81.2 W when the pulse duration is adjusted from 150 μ s to 1000 μ s, confirming a significant enhancement of 24.7%. A laser rate equation model incorporating the amplified spontaneous emission is also utilized and numerically solved, and the simulated results agree well with the experimental data.
Keywords:  pump pulse duration      diode-side-pumped      pulsed Nd:YAG laser      laser rate equation      amplified spontaneous emission  
Received:  13 October 2021      Revised:  30 November 2021      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFB0402103),the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.GJJSTD20180004),and the Fund of Technical Institute of Physics and Chemistry,Chinese Academy of Sciences (Grant No.Y8A9021H11).
Corresponding Authors:  Qi Bian,E-mail:bianqi@mail.ipc.ac.cn;Yu Shen,E-mail:shenyu@mail.ipc.ac.cn     E-mail:  bianqi@mail.ipc.ac.cn;shenyu@mail.ipc.ac.cn
About author:  2021-12-18

Cite this article: 

Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军) Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser 2022 Chin. Phys. B 31 054208

[1] Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W, Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J and Injeyan H 2006 Opt. Lett. 31 1247
[2] Xu Y T, Xu J L, Cui Q J, Xie S Y, Lu Y P, Bo Y, Peng Q J, Cui D F and Xu Z Y 2010 Chin. Phys. Lett. 27 024201
[3] Fu X, Li P L, Liu Q and Gong M L 2014 Opt. Express 22 18421
[4] Wang H L, Huang W L, Zhou Z Y and Cao H B 2004 Opt. Laser Tech. 36 69
[5] Zhao P F, Chang L, Dong Z Y, Yu H J, Wang N, Zhou S Z, He C J and Lin X C 2020 Opt. Commun. 456 124643
[6] Zhu J F, Liu K, Li J, Wang J L, Yu Y, Wang H B, Gao Z Y, Xie T F, Li C Y, Pan Y B and Wei Z Y 2017 Chin. Phys. B 26 054213
[7] Zhang C, Du S F, Niu Y X, Wang C L, Wang Z C, Xu J L, Bo Y, Peng Q J, Cui D F and Xu Z Y 2014 Chin. Phys. Lett. 31 044201
[8] Yu D L and Tang D Y 2003 Opt. Laser Tech. 35 37
[9] Hajiesmaeilbaigi F, Razzaghi H, Esfahani M M, Moghaddam M R A and Sabbaghzadeh J 2005 Phys. Lett. 2 437
[10] Sundar R, Ranganathan K and Nath A K 2007 Opt. Laser Tech. 39 1426
[11] Sundar R, Hedaoo P, Ranganathan K, Soni J K, Bindra K S and Oak S M 2015 Appl. Opt. 54 9855
[12] Duan W Q, Mei X S, Fan Z J, Chen J M and Zhang Y F 2020 J. Opt. Soc. Am. B 37 804
[13] Hecker S, Blothe M, Grossmann D and Graf T 2020 Appl. Opt. 59 6452
[14] Serebryakov V A, Boĭko É V, Petrishchev N N and Yan A V 2010 J. Opt. Technol. 77 6
[15] Bian Q, Bo Y, Zuo J W, Feng L, Gao H W, Yuan L, Cui D F, Peng Q J, Chen H B and Xu Z Y 2020 Opt. Lett. 45 1818
[16] Moghtader Dindarlu M H, Kavosh Tehrani M, Saghafifar H and Maleki A 2015 Chin. Phys. B 24 124205
[17] Koechner W 2006 Solid-State Laser Engineering (Berlin: Springer Publishing) pp. 113-118
[18] Albach D, Chanteloup J C and Touzé G Le 2009 Opt. Express 17 3792
[19] Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J and Xu Z Y 2020 Chin. Phys. Lett. 37 064203
[20] Barnes N P and Walsh B M 1999 IEEE J. Quantum Electron. 35 101
[21] Zhang L, Guo Y D, Chen Z Z, Gong K L, Xu J L, Yuan L, Lin Y Y, Meng S, Li Y, Shao C F, Li S, Zhang Z F, Bo Y, Peng Q J, Cui D F and Xu Z Y 2019 IEEE Photon. Technol. Lett. 31 405
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[3] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[4] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[5] Effect of different metal-backed waveguides on amplified spontaneous emission
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Meng Ling-Chuan (孟令川), Wu Wen-Bin (武文彬 ). Chin. Phys. B, 2012, 21(8): 084212.
[6] The stimulated Raman scattering competition between solute and solvent in Rhodamine B solution
Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Sun Cheng-Lin(孙成林), Li Zhan-Long(李占龙), Song Wei(宋薇), Men Zhi-Wei(门志伟), and He Li-Qiao(何丽桥) . Chin. Phys. B, 2012, 21(3): 034211.
[7] Amplified spontaneous emission from metal-backed poly[2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] film
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Teng Feng (滕枫), Lou Zhi-Dong (娄志东), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Wu Wen-Bin (武文彬). Chin. Phys. B, 2011, 20(7): 077803.
[8] Solvent-vapour treatment induced performance enhancement of amplified spontaneous emission based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene]
Zhang Bo(张波), Hou Yan-Bing(侯延冰), Teng Feng(滕枫), Lou Zhi-Dong(娄志东), Liu Xiao-Jun(刘小君), Hu Bing(胡兵), and Wu Wen-Bin(武文彬). Chin. Phys. B, 2011, 20(5): 054208.
[9] Measurement of the carrier recovery time in SOA based on four-wave mixing on narrow-band ASE spectrum
Cheng Cheng(程乘), Zhang Xin-Liang(张新亮), Zhang Yu(张羽), Liu Lei(刘磊), and Huang De-Xiu(黄德修). Chin. Phys. B, 2010, 19(10): 104206.
[10] Broadband amplified spontaneous emission from Er3+-doped single-mode tellurite fibre
Chen Dong-Dan(陈东丹), Zhang Qin-Yuan(张勤远), Liu Yue-Hui(刘粤惠), Xu Shan-Hui(徐善辉), Yang Zhong-Min(杨中民), Deng Zai-De(邓再德), and Jiang Zhong-Hong(姜中宏). Chin. Phys. B, 2006, 15(12): 2902-2905.
No Suggested Reading articles found!