Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054210    DOI: 10.1088/1674-1056/23/5/054210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Low-loss terahertz waveguide with InAs-graphene-SiC structure

Xu De-Gang (徐德刚), Wang Yu-Ye (王与烨), Yu Hong (于红), Li Jia-Qi (李佳起), Li Zhong-Xiao (李忠孝), Yan Chao (闫超), Zhang Hao (张昊), Liu Peng-Xiang (刘鹏翔), Zhong Kai (钟凯), Wang Wei-Peng (王卫鹏), Yao Jian-Quan (姚建铨)
College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;Key Laboratory of Opto-electronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, China
Abstract  We demonstrate a low-loss terahertz waveguide based on the InAs-graphene-SiC structure. By analyzing the terahertz waveguide proposed in this paper, we can obtain that it is the characteristic of a low transmission loss coefficient (αloss ≈ 0.55 dB/m) for fundamental mode (LP01) when the incident frequency is larger than 3.0 THz. The critical radii of the inside and outside cylinders have been found for the high-quality transmission. The large inside radius and the high transmission frequency result in a flat transmission loss coefficient curve. As a strictly two-dimensional material, the double graphene surface rings perform better to improve the quality of transmission mode. These results provide a new idea for the research of the long-distance THz waveguide.
Keywords:  InAs-graphene-SiC structure      low-loss terahertz waveguide      transmission      critical radii  
Received:  07 August 2013      Revised:  24 October 2013      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  61.48.Gh (Structure of graphene)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339802), the National High Technology Research and Development Program of China (Grant No. 2011AA010205),the National Natural Science Foundation of China (Grant Nos. 61107086 and 61172010), the Natural Science Foundation of Tianjin, China (Grant Nos. 11JCYBJC01100 and 13ZCZDSF02300), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110053), and the THz Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. CAEPTHZ201201 and CAEPTHZ201304).
Corresponding Authors:  Wang Yu-Ye     E-mail:  yuyewang@tju.edu.cn
About author:  42.65.-k; 61.48.Gh; 42.65.Wi

Cite this article: 

Xu De-Gang (徐德刚), Wang Yu-Ye (王与烨), Yu Hong (于红), Li Jia-Qi (李佳起), Li Zhong-Xiao (李忠孝), Yan Chao (闫超), Zhang Hao (张昊), Liu Peng-Xiang (刘鹏翔), Zhong Kai (钟凯), Wang Wei-Peng (王卫鹏), Yao Jian-Quan (姚建铨) Low-loss terahertz waveguide with InAs-graphene-SiC structure 2014 Chin. Phys. B 23 054210

[1] Hao X, Chen Y F, Wang Z G, Liu J B, He J R and Li Y R 2013 Chin. Phys. B 22 076804
[2] Sun L F, Dong L M, Wu Z F and Fang C 2013 Chin. Phys. B 22 077201
[3] Geng Y F, Tan X L, Wang P and Yao J Q 2008 Appl. Phys. B 91 333
[4] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p. 258
[5] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[6] George P A, Strait J, Dawlaty J and Shivaraman S 2008 Nano Lett. 8 4248
[7] He X Y and Kim S 2013 J. Opt. Soc. Am. B 30 2461
[8] Dubinov A A, Aleshkin V Y, Maxim R, Taiichi O and Victor R 2009 Appl. Phys. Express 2 092301
[9] Yuan Y Z, Yao J Q and Xu W 2012 Opt. Lett. 37 960
[10] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[11] Zhang H, Fu Q, Yi C, Tan D L and Bao X H 2009 Chin. Sci. Bull. 54 2446
[12] Arunachalam N, Peter A J and Yoo C K 2012 J. Lumin. 132 1311
[13] Ito T, Matsuura Y J, Miyagi M, Minamide H and Ito H 2007 J. Opt. Soc. Am. B 24 1230
[14] Gloge D 1971 Appl. Opt. 10 2442
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[3] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[4] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[5] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[6] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[7] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[8] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[9] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[10] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[11] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[12] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[13] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[14] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[15] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
No Suggested Reading articles found!