Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056102    DOI: 10.1088/1674-1056/ac43aa

Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel

Peng-Lin Gao(高朋林)1,2, Jian Gong(龚建)2, Qiang Tian(田强)2, Gung-Ai Sun(孙光爱)2, Hai-Yang Yan(闫海洋)2, Liang Chen(陈良)2, Liang-Fei Bai(白亮飞)2, Zhi-Meng Guo(郭志猛)3, and Xin Ju(巨新)1,†
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
3 Institute of Power Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Abstract  A 9Cr-oxide dispersion strengthened (ODS) steel was thermally aged at 873 K for up to 5000 h. The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scattering under a magnetic field. Combined with transmission electron microscopy, Vickers micro-hardness tests and electron backscattered diffraction measurements, all the results showed that the thermal treatment had little or no effect on the size distributions and volume fractions of the oxide nanoparticles in the ferromagnetic matrix, which suggested excellent thermal stability of the 9Cr-ODS steel.
Keywords:  oxide dispersion strengthened (ODS) steel      small angle neutron scattering (SANS)      thermal aging      nanoparticle  
Received:  07 July 2021      Revised:  13 December 2021      Accepted manuscript online: 
PACS:  61.05.fg (Neutron scattering (including small-angle scattering))  
  68.37.Lp (Transmission electron microscopy (TEM))  
  68.60.Dv (Thermal stability; thermal effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2017YFB0702400).
Corresponding Authors:  Xin Ju,     E-mail:
About author:  2021-12-16

Cite this article: 

Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新) Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel 2022 Chin. Phys. B 31 056102

[1] Ohtsuka S, Ukai S, Fujiwara M, Kaito T and Narita T 2004 J. Nucl. Mater. 329-333 372
[2] Odette G R 2018 Scripta Mater. 143 142
[3] Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer D T and Allen T R 2013 J. Nucl. Mater. 434 311
[4] Gao P, Ju X, Xin Y, Cao Q S, Guo Z M, Guo L P and Wang B Y 2016 IEEE. T. Plasma. Sci. 44 1631
[5] Li Y F, Zhang J R, Shan Y Y, Yan W, Shi Q Q, Yang K, Shen J J, Nagasaka T, Muroga T, Yang H L, Kano S and Abe H 2019 J. Nucl. Mater. 517 307
[6] Li B S, Yang Z, Xu S, Wei K F, Wang Z G, Shen T L, Zhang T M and Liao Q 2021 Chin. Phys. B 30 036102
[7] Li Y F, Nagasaka T, Muroga T, Kimura A and Ukai S 2011 Fusion Engin. Design 86 2495
[8] Klueh R L, Gelles D S, Jitsukawa S, Kimura A Odette G R, Schaaf B V D and Victoria M 2002 J. Nucl. Mater. 307-311 455
[9] Oksiuta Z, Kozikowski P, Lewandowska M, Ohnuma M, Suresh K and Kurzydlowski K J 2013 J. Mater. Sci. 48 4620
[10] Zhong S Y, Ribis J, Klosek V, Carlan Y D, Lochet N, Ji V and Mathon M H 2012 J. Nucl. Mater. 428 154
[11] Ribis J, Lescoat M L, Zhong S Y, Carlan Y D and Mathon M H 2013 J. Nucl. Mater. 442 S101
[12] Capdevila C, Miller M K and Russell K F 2008 J. Mater. Sci. 43 3889
[13] Capdevila C, Miller M K and Chao J 2012 Acta Mater. 60 4673
[14] Száraz Z, Török G, Kršjak V and Hähner P 2013 J. Nucl. Mater. 435 56
[15] Mathon M H, Carlan Y D, Geoffroy G, Averty X, Alaamo A and Novion C H 2003 J. Nucl. Mater. 312 236
[16] Leitner H, Staron P, Clemens H, Marsoner S and Warbichler P 2005 Mat. Sci. Eng. A 398 323
[17] Staron P, Jamnig B, Leitner H, Ebner R and Clemens H 2003 J. Appl. Crystallogr. 36 415
[18] Zhang Z W, Yao L, Wang X L and Miller M K 2015 Sci. Rep. 5 10600
[19] Mathon M H, Perrut M, Zhong S Y and Carlan Y D 2012 J. Nucl. Mater. 428 147
[20] Hu H L, Zhou Z J, Li M, Zhang L F, Wang M, Li S F and Ge C C 2012 Corros. Sci. 65 209
[21] Toloczko M B, Gelles D S, Garner F A Kurtz R J and Abe K 2004 J. Nucl. Mater. 329-333 352
[22] Rouffié A L, Crépin J, Sennour M, Tanguy B, Pineau A, Hamon D, Wident P, Vincent S, Garat V and Fournier B 2014 J. Nucl. Mater. 445 37
[23] Pareja R, Parente P, Muñoz A, Radulescu A and Castro V D 2015 Philos. Mag. 95 2450
[24] Keiderling K 2002 Appl. Phys. A 74 s1455
[25] Jackson A J 2008 Introduction to Small Angle Neutron Scattering and Neutron Reflectometry p. 5
[26] Kline R S 2006 J. Appl. Crystallogr. 39 895
[27] Guinier A, Fournet G, Walker C B and Vineyard G H 1956 Phys. Today 9 38
[28] Coppola R, Kampmann R, Magnani M and Staron P 1998 Acta Mater. 46 5447
[29] He P, Gao P L, Tian Q, Lv J M and Yao W Z 2017 Mater. Lett. 209 535
[30] Oono N, Nakamura K, Ukai S, Kaito T, Torimaru T, Kimura A and Hayashi S 2016 Nucl. Mater. Energy 9 342
[31] Ribis J and Carlan Y D 2012 Acta Mater. 60 238
[32] Ribis J, Thual M A, Guilbert T, Carlan Y D and Legris A 2017 J. Nucl. Mater. 484 183
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[7] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[8] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[9] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[10] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[11] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[12] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[13] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
No Suggested Reading articles found!