Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048701    DOI: 10.1088/1674-1056/ac3a5c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Evaluation on performance of MM/PBSA in nucleic acid-protein systems

Yuan-Qiang Chen(陈远强)1, Yan-Jing Sheng(盛艳静)1, Hong-Ming Ding(丁泓铭)1,†, and Yu-Qiang Ma(马余强)2,‡
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method has been widely used in predicting the binding affinity among ligands, proteins, and nucleic acids. However, the accuracy of the predicted binding energy by the standard MM/PBSA is not always good, especially in highly charged systems. In this work, we take the protein-nucleic acid complexes as an example, and showed that the use of screening electrostatic energy (instead of Coulomb electrostatic energy) in molecular mechanics can greatly improve the performance of MM/PBSA. In particular, the Pearson correlation coefficient of dataset II in the modified MM/PBSA (i.e., screening MM/PBSA) is about 0.52, much better than that (< 0.33) in the standard MM/PBSA. Further, we also evaluate the effect of solute dielectric constant and salt concentration on the performance of the screening MM/PBSA. The present study highlights the potential power of the screening MM/PBSA for predicting the binding energy in highly charged bio-systems.
Keywords:  molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA)      screening electrostatic interaction      protein      nucleic acid      molecular dynamics simulation  
Received:  11 October 2021      Revised:  11 November 2021      Accepted manuscript online:  17 November 2021
PACS:  87.14.E- (Proteins)  
  87.14.G- (Nucleic acids)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.kj (Protein-polynucleotide interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874045 and 11774147).
Corresponding Authors:  Hong-Ming Ding, Yu-Qiang Ma     E-mail:  dinghm@suda.edu.cn;myqiang@nju.edu.cn

Cite this article: 

Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强) Evaluation on performance of MM/PBSA in nucleic acid-protein systems 2022 Chin. Phys. B 31 048701

[1] Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang J Z H and Hou T 2019 Chem. Rev. 119 9478
[2] Genheden S and Ryde U 2015 Expert. Opin. Drug. Dis. 10 449
[3] Wang C, Greene D, Xiao L, Qi R and Luo R 2018 Front. Mol. Biosci. 4 87
[4] Homeyer N and Gohlke H 2012 Mol. Inform. 31 114
[5] Williamsnoonan B J, Yuriev E and Chalmers D K 2017 J. Med. Chem. 61 638
[6] Chodera J D, Mobley D L, Shirts M R, Dixon R W, Branson K and Pande V S 2011 Curr. Opin. Struc. Biol. 21 150
[7] Pohorille A, Jarzynski C and Chipot C 2010 J. Phys. Chem. B 114 10235
[8] Pu C, Yan G, Shi J and Li R 2017 Med. Chem. Comm. 8 1452
[9] Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y and Hou T 2014 Phys. Chem. Chem. Phys. 16 22035
[10] Hou T, Wang J, Li Y and Wang W 2011 J. Comput. Chem. 32 866
[11] Ahinko M, Niinivehmas S, Jokinen E M and Pentikainen O T 2019 Chem. Biol. Drug. Des. 93 522
[12] Hou T, Wang J, Li Y and Wang W 2011 J. Chem. Inf. Model. 51 69
[13] Liu J, He X and Zhang J Z H 2013 J. Chem. Inf. Model. 53 1306
[14] Wang E, Liu H, Wang J, Weng G, Sun H, Wang Z, Kang Y and Hou T 2020 J. Chem. Inf. Model. 60 5353
[15] Mikulskis P, Genheden S and Ryde U 2014 J. Chem. Inf. Model. 54 2794
[16] Greenidge P, Kramer C, Mozziconacci J and Wolf R M 2013 J. Chem. Inf. Model. 53 201
[17] Wang E, Weng G, Sun H, Du H, Zhu F, Chen F, Wang Z and Hou T 2019 Phys. Chem. Chem. Phys. 21 18958
[18] Maffucci I and Contini A 2016 J. Chem. Inf. Model. 56 1692
[19] Liu X, Peng L and Zhang J Z H 2019 J. Chem. Inf. Model. 59 272
[20] Sun Z, Yan Y N, Yang M and Zhang J Z H 2017 J. Chem. Phys. 146 124124
[21] Chen F, Sun H, Wang J, Zhu F, Liu H, Wang Z, Lei T, Li Y and Hou T 2018 RNA 24 1183
[22] Sun H, Li Y, Tian S, Xu L and Hou T 2014 Phys. Chem. Chem. Phys. 16 16719
[23] Ravindranathan K P, Tiradorives J, Jorgensen W L and Guimaraes C R W 2011 J. Chem. Theory Comput. 7 3859
[24] Li Y, Cong Y, Feng G, Zhong S, Zhang J Z H, Sun H and Duan L 2018 Struct. Dynam. 5 064101
[25] Sheng Y J, Yin Y W, Ma Y Q and Ding H M 2021 J. Chem. Inf. Model. 61 2454
[26] Ding H M, Yin Y W, Ni S D, Sheng Y J and Ma Y Q 2021 Chin. Phys. Lett. 38 018701
[27] Manning G S 1969 J. Chem. Phys. 51 924
[28] Liljas A, Liljas L, Piskur J, Linblom G, Nissen P and Kjeldgaard M 2009 Textbook of Structural Biology (Singapore:World Scientific Publishing)
[29] Ding H, Li J, Chen N, Hu X, Yang X, Guo L, Li Q, Zuo X, Wang L and Ma Y 2018 ACS Central. Sci. 4 1344
[30] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F and Shih W M 2009 Nature 459 414
[31] Hu Q, Li H, Wang L, Gu H and Fan C 2018 Chem. Rev. 119 6459
[32] Orphanides G and Reinberg D 2002 Cell 108 439
[33] Liu Z, Su M, Han L, Liu J, Yang Q, Li Y and Wang R 2017 Acc. Chem. Res. 50 302
[34] Wang R, Fang X, Lu Y and Wang S 2004 J. Med. Chem. 47 2977
[35] Jorgensen W L and Madura J D 1983 J. Am. Chem. Soc. 105 1407
[36] Der Spoel D V, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
[37] Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1-2 19
[38] Maier J, Martinez C, Kasavajhala K, Wickstrom L, Hauser K and Simmerling C 2015 J. Chem. Theory Comput. 11 3696
[39] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[40] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[41] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[42] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[43] https://jerkwin.github.io/gmxtool
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[9] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[10] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[11] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[12] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
No Suggested Reading articles found!