Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047201    DOI: 10.1088/1674-1056/ac474c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers

Nan Lu(陆楠) and Jie Guan(管杰)
School of Physics, Southeast University, Nanjing 211189, China
Abstract  We study the thermal and electronic transport properties as well as the thermoelectric (TE) performance of three two-dimensional (2D) XI2 (X=Ge, Sn, Pb) bilayers using density functional theory and Boltzmann transport theory. We compared the lattice thermal conductivity, electrical conductivity, Seebeck coefficient, and dimensionless figure of merit (ZT) for the XI2 monolayers and bilayers. Our results show that the lattice thermal conductivity at room temperature for the bilayers is as low as ~1.1 W·m-1·K-1-1.7 W·m-1·K-1, which is about 1.6 times as large as the monolayers for all the three materials. Electronic structure calculations show that all the XI2 bilayers are indirect-gap semiconductors with the band gap values between 1.84 eV and 1.96 eV at PBE level, which is similar as the corresponding monolayers. The calculated results of ZT show that the bilayer structures display much less direction-dependent TE efficiency and have much larger n-type ZT values compared with the monolayers. The dramatic difference between the monolayer and bilayer indicates that the inter-layer interaction plays an important role in the TE performance of XI2, which provides the tunability on their TE characteristics.
Keywords:  2D group-IV diiodide      thermoelectric materials      bilayers  
Received:  14 September 2021      Revised:  16 November 2021      Accepted manuscript online:  31 December 2021
PACS:  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the Fundamental Research Fund for the Central Universities and the Zhongying Young Scholar Program of Southeast University. We thank the Big Data Computing Center of Southeast University for providing facility support for performing calculations presented in this manuscript.
Corresponding Authors:  Jie Guan     E-mail:  guanjie@seu.edu.cn

Cite this article: 

Nan Lu(陆楠) and Jie Guan(管杰) Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers 2022 Chin. Phys. B 31 047201

[1] Snyder G and Toberer E 2008 Nat. Mater. 7 105
[2] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[3] Hicks L D, Harman T C, Sun X and Dresselhaus M S 1996 Phys. Rev. B 53 R10493
[4] Lu P and Qu L 2013 Chin. Phys. Lett. 30 017101
[5] Melnyk G, Bauer E, Rogl P, Skolozdra R and Seidl E 2000 J. Alloys Compd. 296 235
[6] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884
[7] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[8] Li G, Yao K and Gao G 2017 Nanotechnology 29 015204
[9] Lv H Y, Lu W J, Shao D F, Lu H Y and Sun Y P 2016 J. Mater. Chem. C 4 4538
[10] T Hung N, Nugraha A R T, Yang T, Zhang Z and Saito R 2019 J. Appl. Phys. 125 082502
[11] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Adv. Electron. Mater. 2 1600019
[12] Lin C, Lydia R, Yun J H, Lee H S and Rhyee J S 2017 Chem. Mater. 29 5344
[13] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109
[14] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[15] Hong J and Delaire O 1993 Mater. Today Phys. 10 100093
[16] Dong B, Wang Z, Hung N T, Oganov A R, Yang T, Saito R and Zhang Z 2019 Phys. Rev. Mater. 3 013405
[17] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J and Pei Y 2018 Joule 2 976
[18] Wang Q, Quhe R, Guan Z, Wu L, Bi J, Guan P, Lei M and Lu P 2018 RSC Adv. 8 21280
[19] Huang H H, Fan X, Singh D J and Zheng W T 2019 J. Mater. Chem. C 7 10652
[20] Lv H Y, Lu W J, Shao D F and Sun Y P 2014 Phys. Rev. B 90 085433
[21] Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G and Cuniberti G 2016 J. Phys. Chem. C 120 18841
[22] Wickramaratne D, Zahid F and Lake R K 2014 J. Appl. Phys. 140 124710
[23] Huang W, Da H and Liang G 2013 J. Appl. Phys. 113 104304
[24] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[25] Peng B, Mei H, Zhang H, Shao H, Xu K, Ni G, Jin Q, Soukoulis C M and Zhu H 2019 Inorg. Chem. Front. 6 920
[26] Hu Y F, Yang J, Yuan Y Q and Wang J W 2020 Philos. Mag. 100 782
[27] Betal A, Bera J and Sahu S 2021 Comput. Mater. Sci. 186 109977
[28] Shulenburger L, Baczewski A D, Zhu Z, Guan J and Tomanek D 2015 Nano Lett. 15 8170
[29] Fugallo G, Lazzeri M, Paulatto L and Mauri F 2013 Phys. Rev. B 88 045430
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[32] Baroni S, Gironcoli S de, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[33] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[34] Madsen G K, Carrete J and Verstraete M J 2018 Comput. Phys. Commun. 231 140
[35] Peng H, Kioussis N and Snyder J 2014 Phys. Rev. B 89 195206
[36] Venkatasubramanian, R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[37] Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y and Zhang Z 2017 Phys. Rev. Lett. 119 106101
[38] Naseri M, Hoat D M, Salehi K and Amirian S 2020 J. Mol. Graph. 95 107501
[39] Zólyomi V, Drummond N D and Fal'ko V I 2014 Phys. Rev. B 89 205416
[40] Zhang J, Xie Y, Hu Y and Shao H 2020 Appl. Surf. Sci. 532 147387
[41] Ran R, Cheng C, Zeng Z Y, Chen X R and Chen Q F 2019 Philos. Mag. 99 1277
[42] Cröll A, Tonn J, Post E, Böttner H and Danilewsky A N 2017 J. Cryst. Growth 466 16
[43] Lin D, Guo B, Dai Z, Lin C and Hsu H 2019 Crystals 9 589
[44] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Jiang P H and Shi J 2017 Sci. Rep. 7 4623
[45] Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R and Zhu H 2016 Phys. Rev. B 94 245420
[46] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M and Su G 2015 Phys. Chem. Chem. Phys. 17 4854
[47] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 Sci. Rep. 6 20225
[48] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103
[49] Klemens P G 1955 Proc. Phys. Soc. A 68 1113
[50] Zhao Y, Dai, Z, Lian C, Zeng S, Li G, Ni J and Meng S 2017 Phys. Rev. Mater. 1 065401
[51] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G 2011 Nature 473 66
[52] DiSalvo F J 1999 Science 285 703
[53] Sofo J O and Mahan G D 1994 Phys. Rev. B 49 4565
[54] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[55] Mi X, Yu X, Yao K, Huang X, Yang N and Lü J 2015 Nano Lett. 15 5229
[56] Ding Z, An M, Mo S, Yu X, Jin Z, Liao Y, Esfarjani K, Lü J, Shiomi J and Yang N 2019 J. Mater. Chem. A 7 2114
[57] Bruzzone S and Fiori G 2011 Appl. Phys. Lett. 99 222108
[58] Shafique A, Samad A and Shin Y H 2017 Phys. Chem. Chem. Phys. 19 20677
[59] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
[60] Yuan Q, Zheng F, Shi Z, Li Q, Lv Y, Chen Y, Zhang P and Li S 2021 Adv. Sci. 8 2100009
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[3] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[4] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[5] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[6] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[7] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[8] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[9] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[10] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[11] Improved thermoelectric performance in p-type Bi0.48Sb1.52Te3 bulk material by adding MnSb2Se4
Binglei Cao(曹丙垒), Jikang Jian(简基康), Binghui Ge(葛炳辉), Shanming Li(李善明), Hao Wang(王浩), Jiao Liu(刘骄), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2017, 26(1): 017202.
[12] Structural stabilities and electrical properties of Ba8Ga16-xCuxSn30 single crystals under high temperatures
Jin-Song Wang(王劲松), Feng Cheng(程峰), Hong-Xia Liu(刘红霞), De-Cong Li(李德聪), Lan-Xian Shen(申兰先), Shu-Kang Deng(邓书康). Chin. Phys. B, 2016, 25(6): 067402.
[13] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
[14] Improved thermoelectric property of cation-substituted CaMnO3
Pradeep Kumar, Subhash C. Kashyap, Vijay Kumar Sharma, H. C. Gupta. Chin. Phys. B, 2015, 24(9): 098101.
[15] Exchange bias in ferromagnet/antiferromagnet bilayers
Shi Zhong (时钟), Du Jun (杜军), Zhou Shi-Ming (周仕明). Chin. Phys. B, 2014, 23(2): 027503.
No Suggested Reading articles found!