Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜)1,† and Ping Zhang(张平)2,3
1 Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract First-principles calculations based on the density functional theory were performed to systematically study the electronic properties of the thin film of antimony in (111) orientation. By considering the spin-orbit interaction, for stoichiometric surface, the topological states keep robust for six-bilayer case, and can be recovered in the three-bilayer film, which are guaranteed by time-reversal symmetry and inverse symmetry. For reduced surface doped by non-magnetic Bi or magnetic Mn atom, localized three-fold symmetric features can be identified. Moreover, band structures show that the non-trivial topological states stand for non-magnetic substitutional Bi atom, while can be eliminated by adsorbed or substitutional magnetic Mn atom.
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
Corresponding Authors:
Shuangxi Wang
E-mail: sxwang@cup.edu.cn
Cite this article:
Shuangxi Wang(王双喜) and Ping Zhang(张平) Topological properties of Sb(111) surface: A first-principles study 2022 Chin. Phys. B 31 047105
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [3] Bernevig B A, Hughes T L and Zhang S C 2006 Science314 1757 [4] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science318 766 [5] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [6] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [7] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science325 178 [8] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X and Xue Q K 2009 Phys. Rev. Lett. 103 266803 [9] Sugawara K, Sato T, Souma S, Takahashi T, Arai M and Sasaki T 2006 Phys. Rev. Lett. 96 046411 [10] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science323 919 [11] Bian G, Miller T and Chiang T C 2011 Phys. Rev. Lett. 107 036802 [12] She L, Yu Y, Wu P, Zhang Y, Qin Z, Huang M and Cao G 2012 J. Chem. Phys. 136 144707 [13] Zhang P, Liu Z, Duan W, Liu F and Wu J 2012 Phys. Rev. B85 201410 [14] Ares P, Palacios J, Abellan G, Herrero J and Zamora F 2018 Adv. Mater. 30 1703771 [15] Bian G, Wang X, Kowalczyk P J, Maerkl T, Brown S A and Chiang T C 2019 J. Phys. Chem. Solid128 109 [16] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B78 195424 [17] Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603 [19] Sun B, Liu S J and Zhu W J 2006 Acta Phys. Sin. 55 6589 (in Chinese) [20] Sun B, Liu S J, Duan S Q and Zhu W J 2007 Acta Phys. Sin. 56 1598 (in Chinese) [21] Qiu A N, Wu J S and Zhang L T 2007 Acta Phys. Sin. 56 4891 (in Chinese) [22] Liu K, Wang F H and Shang J X 2017 Acta Phys. Sin. 66 216801 (in Chinese) [23] Wang Z H, Gao X P A and Zhang Z D 2018 Chin. Phys. B27 107901 [24] Su Z, Kang Y, Zhang B and Jiang H 2019 Chin. Phys. B28 117301 [25] Fu L and Kane C L 2007 Phys. Rev. B76 045302 [26] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature452 970 [27] Nakamura F, Kousa Y, Taskin A A, Takeichi Y, Nishide A, Kakizaki A, D'Angelo M, Lefevre P, Bertran F, Taleb-Ibrahimi A, Komori F, Kimura S I, Kondo H, Ando Y and Matsuda I 2011 Phys. Rev. B84 235308 [18] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802 [28] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [30] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [31] Weinert M and Davenport J W 1992 Phys. Rev. B45 13709 [32] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [33] Barrett C S, Cucka P and Haefner K 1963 Acta. Cryst. 16 451 [34] Martin R 2008 Electronic Structure:Basic Theory and Practical Methods (Cambridge:Cambridge University Press) [35] Wang S and Zhang P 2020 Phys. Lett. A384 126281 [36] Jeffrey C, Teo Y, Fu L and Kane C L 2008 Phys. Rev. B78 045426 [37] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science329 61
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.