CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics |
Pei-Pei Ma(马培培)1,2, Jun Zheng(郑军)1,2,†, Ya-Bao Zhang(张亚宝)1,2, Xiang-Quan Liu(刘香全)1,2, Zhi Liu(刘智)1,2, Yu-Hua Zuo(左玉华)1,2, Chun-Lai Xue(薛春来)1,2, and Bu-Wen Cheng(成步文)1,2 |
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Lateral β-Ga2O3 Schottky barrier diodes (SBDs) each are fabricated on an unintentionally doped (-201) n-type β-Ga2O3 single crystal substrate by designing L-shaped electrodes. By introducing sidewall electrodes on both sides of the conductive channel, the SBD demonstrates a high current density of 223 mA/mm and low specific on-resistance of 4.7 mΩ ·cm2. Temperature-dependent performance is studied and the Schottky barrier height is extracted to be in a range between 1.3 eV and 1.35 eV at temperatures ranging from 20 ℃ to 150 ℃. These results suggest that the lateral β-Ga2O3 SBD has a tremendous potential for future power electronic applications.
|
Received: 02 July 2021
Revised: 08 September 2021
Accepted manuscript online: 16 September 2021
|
PACS:
|
73.40.Mr
|
(Semiconductor-electrolyte contacts)
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Kk
|
(Junction diodes)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant Nos. 62050073, 62090054, and 61975196), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC022). |
Corresponding Authors:
Jun Zheng
E-mail: zhengjun@semi.ac.cn
|
Cite this article:
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文) Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics 2022 Chin. Phys. B 31 047302
|
[1] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155 [2] Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lv H B, Liu Q and Liu M 2019 Chin. Phys. B 28 018501 [3] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105 [4] Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [5] Zhang H P, Yuan L, Tang X Y, Hu J C, Sun J W, Zhang Y M, Zhang Y M and Jia R X 2020 IEEE Trans. Power Electron. 35 5157 [6] Dong H, Xue H W, He Q M, Qin Y, Jian G Z, Long S B and Liu M 2019 J. Semicond. 40 011802 [7] Galazka Z, Irmscher K, Schewski R, Hanke I M, Pietsch M, Ganschow S, Klimm D, Dittmar A, Fiedler A, Schroeder T and Bickermann M 2020 J. Cryst. Growth 529 125297 [8] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Cryst. Growth 404 184 [9] Mu W X, Jia Z T, Yin Y R, Hu Q Q, Li Y, Wu B Y, Zhang J and Tao X T 2017 J. Alloys Compd. 714 453 [10] Mohamed H F, Xia C T, Sai Q L, Cui H Y, Pan M Y and Qi H J 2019 J. Semicond. 40 011801 [11] Xu Y, Chen X H, Cheng L, Ren F F, Zhou J J, Bai S, Lu H, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 038503 [12] Wang H, Jiang L L, Lin X P, Lei S Q and Yu H Y 2018 Chin. Phys. B 27 127302 [13] Sharma S, Zeng K, Saha S and Singisetti U 2020 IEEE Electron Dev. Lett. 41 836 [14] Lv Y J, Liu H Y, Zhou X Y, Wang Y G, Song X B, Cai Y C, Yan Q L, Wang C L, Liang S X, Zhang J C, Feng Z H, Zhou H, Cai S J and Hao Y 2020 IEEE Electron Dev. Lett. 41 537 [15] Dang K, Zhang J C, Zhou H, Huang S, Zhang T, Bian Z K, Zhang Y C, Wang X H, Zhao S L, Wei K and Hao Y 2020 IEEE Trans. Power Electron. 35 2247 [16] Lu Y, Zhou F, Xu W, Wang D, Xia Y, Zhu Y, Pan D, Ren F, Zhou D, Ye J, Chen D, Zhang R, Zheng Y and Lu H 2020 Appl. Phys. Express 13 096502 [17] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503 [18] He Q M, Mu W X, Dong H, Long S B, Jia Z T, Lv H B, Liu Q, Tang M H, Tao X T and Liu M 2017 Appl. Phys. Lett. 110 093503 [19] Yang J C, Ahn S, Ren F, Pearton S J, Jang S and Kuramata A 2017 IEEE Electron Dev. Lett. 38 906 [20] Jayawardena A, Ahyi A C and Dhar S 2016 Semicond. Sci. Technol. 31 115002 [21] Hu Z Z, Lv Y J, Zhao C Y, Feng Q, Feng Z Q, Dang K, Tian X S, Zhang Y C, Ning J, Zhou H, Kang X W, Zhang J C and Hao Y 2020 IEEE Electron Dev. Lett. 41 441 [22] Allen N, Xiao M, Yan X D, Sasaki K, Tadjer M J, Ma J H, Zhang R Z, Wang H and Zhang Y H 2019 IEEE Electron Dev. Lett. 40 1399 [23] Li W S, Nomoto K, Hu Z Y, Jena D and Xing H G 2020 IEEE Electron Dev. Lett. 41 107 [24] Hu Z Z, Zhou H, Feng Q, Zhang J C, Zhang C F, Dang K, Cai Y C, Feng Z Q, Gao Y Y, Kang X W and Hao Y 2018 IEEE Electron Dev. Lett. 39 1564 [25] Hu Z Z, Zhou H, Dang K, Cai Y C, Feng Z Q, Gao Y Y, Feng Q, Zhang J C and Hao Y 2018 IEEE J. Electron Dev. Soc. 6 815 [26] Wang Y B, Xu W H, Han G Q, You T G, Mu F W, Hu H D, Liu Y, Zhang X C, Huang H, Suga T, Ou X, Ma X H and Hao Y 2020 J. Phys. D:Appl. Phys. 54 034004 [27] Zhang L H, Verma A, Xing H L and Jena D 2017 Jpn. J. Appl. Phys. 56 030304 [28] Ma P P, Zheng J, Zhang Y B, Liu Z, Zuo Y H and Cheng B W 2021 Tsinghua Sci. Technol. [29] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Dev. Lett. 34 493 [30] He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123 [31] Jian G Z, He Q M, Mu W X, Fu B, Dong H, Qin Y, Zhang Y, Xue H W, Long S B, Jia Z T, Lv H B, Liu Q, Tao X T and Liu M 2018 AIP Adv. 8 015316 [32] Crowell C R 1965 Solid State Electron. 8 395 [33] Long Z, Xia X C, Shi J J, Liu J, Geng X L, Zhang H Z and Liang H W 2020 Acta Phys. Sin. 69 138501 (in Chinese) [34] Fu B, Jia Z T, Mu W X, Yin Y R, Zhang J and Tao X T 2019 J. Semicond. 40 011804 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|