Hongxia Liu(刘虹霞)1,2, Xinyue Zhang(张馨月)3, Wen Li(李文)3,†, and Yanzhong Pei(裴艳中)3,‡
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2 Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China; 3 Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Abstract The (GeTe)x(AgSbTe2)100-x alloys, also called TAGS-x in short, have long been demonstrated as a promising candidate for thermoelectric applications with successful services as the p-type leg in radioisotope thermoelectric generators for space missions. This largely stems from the complex band structure for a superior electronic performance and strong anharmonicity for a low lattice thermal conductivity. Utilization of the proven strategies including carrier concentration optimization, band and defects engineering, an extraordinary thermoelectric figure of merit, zT, has been achieved in TAGS-based alloys. Here, crystal structure, band structure, microstructure, synthesis techniques and thermoelectric transport properties of TAGS-based alloys, as well as successful strategies for manipulating the thermoelectric performance, are surveyed with opportunities for further advancements. These strategies involved are believed to be in principle applicable for advancing many other thermoelectrics.
(Methods of materials synthesis and materials processing)
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. T2125008, 92163203, and 52022068), the Innovation Program of Shanghai Municipal Education Commission, the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020007), the Shanghai Natural Science Foundation (Grant No. 19ZR1459900), Taiyuan University of Science and Technology Scientific Research Initial Funding (No. 20222002), and the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, No. 2022-KF-32).
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中) Advances in thermoelectric (GeTe)x(AgSbTe2)100-x 2022 Chin. Phys. B 31 047401
[1] He R, Zhu H, Sun J, Mao J, Reith H, Chen S, Schierning G, Nielsch K and Ren Z 2017 Materials Today Physics1 24 [2] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Advanced Electronic Materials2 1600019 [3] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211 [4] Yu F, Meng X, Cheng J, Liu J P, Yao Y L and Li J 2019 J. Alloys Compd. 797 940 [5] Galazka K, Xie W, Populoh S, Aguirre M H and Weidenkaff A 2020 Rare Metals39 659 [6] Wang R F, Li S, Xue W H, Chen C, Wang Y M, Liu X J and Zhang Q 2020 Rare Metals40 40 [7] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J and Pei Y 2017 Nat. Commun. 8 13828 [8] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science348 109 [9] Vineis C, Shakouri A, Majumdar A and Kanatzidis M 2010 Adv. Mater. 22 3970 [10] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science320 634 [11] Jiang W, Ma L and Xu X 2019 Bio-Design and Manufacturing2 24 [12] Han Q, Chen Y, Song W, Zhang M, Wang S, Ren P, Hao L, Wang A, Bai S and Yin J 2019 Bio-Design and Manufacturing2 269 [13] Snyder G, Christensen M, Nishibori E, Caillat T and Iversen B 2004 Nat. Mater. 3 458 [14] Liu H X, Deng S P, Li D C, Shen L X and Deng S K 2017 Chin. Phys. B26 027401 [15] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422 [16] Li W, Lin S, Ge B, Yang J, Zhang W and Pei Y 2016 Advanced Science3 1600196 [17] Liu H X, Li W, Shen H W, Zhang X Y, Lin S Q and Pei Y Z 2020 Annalen der Physik532 1900561 [18] Zhang X, Chen Z, Lin S, Zhou B, Gao B and Pei Y 2017 ACS Energy Letters2 2470 [19] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature473 66 [20] Lin S, Li W, Chen Z, Shen J, Ge B and Pei Y 2016 Nat. Commun. 7 10287 [21] Li W, Zheng L L, Ge B H, Lin S Q, Zhang X Y, Chen Z W, Chang Y J and Pei Y Z 2017 Adv. Mater. 29 1605887 [22] Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y and Pei Y 2018 Adv. Funct. Mater. 28 1803586 [23] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J and Pei Y 2018 Joule2 976 [24] Tang Y, Gibbs Z M, Agapito L A, Li G, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223 [25] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601 [26] Jin M, Zheng L, Sun C, Jiang L, Meng X, Chen Q and Li W 2021 Chem. Eng. J. 420 130530 [27] Pei Y, LaLonde A D, Wang H and Snyder G J 2012 Energy & Environmental Science 5 7963 [28] Wang H, LaLonde A D, Pei Y and Snyder G J 2013 Adv. Funct. Mater. 23 1586 [29] You L, Zhang J, Pan S, Jiang Y, Wang K, Yang J, Pei Y, Zhu Q, Agne M T, Snyder G J, Ren Z, Zhang W and Luo J 2019 Energy & Environmental Science 12 3089 [30] Jood P, Ohta M, Yamamoto A and Kanatzidis M G 2018 Joule2 1339 [31] Li S, Xin J, Basit A, Long Q, Li S, Jiang Q, Luo Y and Yang J 2020 Adv. Sci. (Weinh)7 1903493 [32] Guo F, Cui B, Li C, Wang Y, Cao J, Zhang X, Ren Z, Cai W and Sui J 2021 Adv. Funct. Mater. 31 2101554 [33] Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X and Chen L 2021 Energy & Environmental Science 14 995 [34] Xing T, Zhu C, Song Q, Huang H, Xiao J, Ren D, Shi M, Qiu P, Shi X, Xu F and Chen L 2021 Adv. Mater. 33 2008773 [35] Li J, Chen Z W, Zhang X Y, Sun Y X, Yang J and Pei Y Z 2017 NPG Asia Materials9 e353 [36] Liu H X, Zhang X Y, Bu Z L, Li W and Pei Y Z 2022 Rare Metals41 921 [37] Levin E M, Bud'ko S L and Schmidt-Rohr K 2012 Adv. Funct. Mater. 22 2766 [38] Levin E M, Cook B A, Harringa J L, Bud'ko S L, Venkatasubramanian R and Schmidt-Rohr K 2011 Adv. Funct. Mater. 21 441 [39] Rodenkirchen C, Cagnoni M, Jakobs S, Cheng Y D, Keutgen J, Yu Y, Wuttig M and Cojocaru-Miredin O 2020 Adv. Funct. Mater. 30 1910039 [40] Zhu T, Gao H, Chen Y and Zhao X 2014 J. Mater. Chem. A2 3251 [41] Hong M, Chen Z G, Yang L, Liao Z M, Zou Y C, Chen Y H, Matsumura S and Zou J 2018 Advanced Energy Materials8 1702333 [42] Chattopadhyay T, Boucherle J X and Vonschnering H G 1987 J. Phys. C:Solid State Phys. 20 1431 [43] Baleva M I and Plachkova S K 1983 JJ. Phys. C:Solid State Phys. 16 791 [44] Plachkova S K 1984 Physica Status Solidi (a)83 349 [45] Chen Y, Jaworski C M, Gao Y B, Wang H, Zhu T J, Snyder G J, Heremans J P and Zhao X B 2014 New J. Phys. 16 013057 [46] Cook B A, Kramer M J, Wei X, Harringa J L and Levin E M 2007 J. Appl. Phys. 101 053715 [47] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science303 818 [48] Cook B A, Wei X, Harringa J L and Kramer M J 2007 Journal of Materials Science42 7643 [49] Yang S H, Zhu T J, Sun T, He J, Zhang S N and Zhao X B 2008 Nanotechnology19 245707 [50] Kumar A, Vermeulen P A, Kooi B J, Rao J, van Eijck L, Schwarzmuller S, Oeckler O and Blake G R 2017 Inorg. Chem. 56 15091 [51] Davidow J and Gelbstein Y 2012 Journal of Electronic Materials42 1542 [52] Thompson A, Sharp J, Rawn C J and Chackoumakos B C 2007 Mater. Res. Soc. Symp. P1044 1044-U03-09 [53] Kumar A, Vermeulen P A, Kooi B J, Rao J, Schwarzmüller S, Oeckler O and Blake G R 2018 RSC Advances8 42322 [54] Cook B A, Harringa J L, Besser M and Venkatasubramanian R 2011 Mater. Res. Soc. 1325 703 [55] Kim B S, Kim I H, Lee J K, Min B K, Oh M W, Park S D, Lee H W and Kim M H 2010 Electronic Materials Letters6 181 [56] Dong Y, Malik A S and DiSalvo F J 2010 Journal of Electronic Materials40 17 [57] Skrabek E A and Trimmer D S 1972 US Patent 3 945[1976-3-23] [58] Zybala R 2020 Synthetic Metals270 116606 [59] Salvador J R, Yang J, Shi X, Wang H and Wereszczak A A 2009 J. Solid State Chem. 182 2088 [60] Lyu W Y, Hong M, Liu W D, Li M, Sun Q, Xu S D, Zou J and Chen Z G 2021 Energy Material Advances2021 2414286 [61] Christakudis G C, Plachkova S K, Shelimova L E and Avilov E S 1991 Physica Status Solidi (a)128 465 [62] Chen Y, Zhu T J, Yang S H, Zhang S N, Miao W and Zhao X B 2010 Journal of Electronic Materials39 1719 [63] Jin J, Zhu T J, Liu X H and Zhao X B 2013 Journal of Materials Science and Engineering31 204 (in Chinese) [64] Schroder T, Rosenthal T, Giesbrecht N, Nentwig M, Maier S, Wang H, Snyder G J and Oeckler O 2014 Inorg. Chem. 53 7722 [65] Yang S H, Zhu T J, Yu C, Shen J J, Yin Z Z and Zhao X B 2011 Journal of Electronic Materials40 1244 [66] Schröder T, Rosenthal T, Giesbrecht N, Maier S, Scheidt E W, Scherer W, Snyder G J, Schnick W and Oeckler O 2014 J. Mater. Chem. A2 6384 [67] Chen Z, Zhang X, Lin S, Chen L and Pei Y 2018 National Science Review5 888 [68] Snyder G J, T. Agne M and Gurunathan R 2018 National Science Review6 380 [69] Luo Y, Cai S, Hua X, Chen H, Liang Q, Du C, Zheng Y, Shen J, Xu J, Wolverton C, Dravid V P, Yan Q and Kanatzidis M G 2018 Advanced Energy Materials9 1803072 [70] Zhu T J, Zhang S N, Yang S H and Zhao X B 2010 Physica Status Solidi (RRL)-Rapid Research Letters4 317 [71] Skrabek E A and Trimmer D S 1995 Properties of the general TAGS system. In CRC handbook of thermoelectrics (Boca Raton, FL:CRC Press) pp. 267——275 [72] Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V and Bhanumurthy K 2009 J. Phys. D:Appl. Phys. 42 015502 [73] Thomas P, Cook B, Stokes D, Krueger G and Venkatasubramanian R 2012 Proc. of SPIE8377 83770H-1 [74] Bulman G and Cook B 2014 Proc. SPIE9115 911507-1 [75] Cook B A, Chan T E, Dezsi G, Thomas P, Koch C C, Poon J, Tritt T and Venkatasubramanian R 2015 Journal of Electronic Materials44 1936 [76] Kim H S, Dharmaiah P and Hong S J 2017 Journal of Electronic Materials47 3119
Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[12]
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.