Special Issue:
TOPICAL REVIEW — Progress in thermoelectric materials and devices
|
TOPICAL REVIEW—Progress in thermoelectric materials and devices |
Prev
Next
|
|
|
Advances in thermoelectric (GeTe)x(AgSbTe2)100-x |
Hongxia Liu(刘虹霞)1,2, Xinyue Zhang(张馨月)3, Wen Li(李文)3,†, and Yanzhong Pei(裴艳中)3,‡ |
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2 Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China; 3 Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China |
|
|
Abstract The (GeTe)x(AgSbTe2)100-x alloys, also called TAGS-x in short, have long been demonstrated as a promising candidate for thermoelectric applications with successful services as the p-type leg in radioisotope thermoelectric generators for space missions. This largely stems from the complex band structure for a superior electronic performance and strong anharmonicity for a low lattice thermal conductivity. Utilization of the proven strategies including carrier concentration optimization, band and defects engineering, an extraordinary thermoelectric figure of merit, zT, has been achieved in TAGS-based alloys. Here, crystal structure, band structure, microstructure, synthesis techniques and thermoelectric transport properties of TAGS-based alloys, as well as successful strategies for manipulating the thermoelectric performance, are surveyed with opportunities for further advancements. These strategies involved are believed to be in principle applicable for advancing many other thermoelectrics.
|
Received: 11 October 2021
Revised: 16 November 2021
Accepted manuscript online: 24 November 2021
|
PACS:
|
74.25.fg
|
(Thermoelectric effects)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
74.25.F-
|
(Transport properties)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. T2125008, 92163203, and 52022068), the Innovation Program of Shanghai Municipal Education Commission, the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020007), the Shanghai Natural Science Foundation (Grant No. 19ZR1459900), Taiyuan University of Science and Technology Scientific Research Initial Funding (No. 20222002), and the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, No. 2022-KF-32). |
Corresponding Authors:
Wen Li, Yanzhong Pei
E-mail: liwen@tongji.edu.cn;yanzhong@tongji.edu.cn
|
Cite this article:
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中) Advances in thermoelectric (GeTe)x(AgSbTe2)100-x 2022 Chin. Phys. B 31 047401
|
[1] He R, Zhu H, Sun J, Mao J, Reith H, Chen S, Schierning G, Nielsch K and Ren Z 2017 Materials Today Physics 1 24 [2] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Advanced Electronic Materials 2 1600019 [3] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211 [4] Yu F, Meng X, Cheng J, Liu J P, Yao Y L and Li J 2019 J. Alloys Compd. 797 940 [5] Galazka K, Xie W, Populoh S, Aguirre M H and Weidenkaff A 2020 Rare Metals 39 659 [6] Wang R F, Li S, Xue W H, Chen C, Wang Y M, Liu X J and Zhang Q 2020 Rare Metals 40 40 [7] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J and Pei Y 2017 Nat. Commun. 8 13828 [8] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109 [9] Vineis C, Shakouri A, Majumdar A and Kanatzidis M 2010 Adv. Mater. 22 3970 [10] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634 [11] Jiang W, Ma L and Xu X 2019 Bio-Design and Manufacturing 2 24 [12] Han Q, Chen Y, Song W, Zhang M, Wang S, Ren P, Hao L, Wang A, Bai S and Yin J 2019 Bio-Design and Manufacturing 2 269 [13] Snyder G, Christensen M, Nishibori E, Caillat T and Iversen B 2004 Nat. Mater. 3 458 [14] Liu H X, Deng S P, Li D C, Shen L X and Deng S K 2017 Chin. Phys. B 26 027401 [15] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422 [16] Li W, Lin S, Ge B, Yang J, Zhang W and Pei Y 2016 Advanced Science 3 1600196 [17] Liu H X, Li W, Shen H W, Zhang X Y, Lin S Q and Pei Y Z 2020 Annalen der Physik 532 1900561 [18] Zhang X, Chen Z, Lin S, Zhou B, Gao B and Pei Y 2017 ACS Energy Letters 2 2470 [19] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66 [20] Lin S, Li W, Chen Z, Shen J, Ge B and Pei Y 2016 Nat. Commun. 7 10287 [21] Li W, Zheng L L, Ge B H, Lin S Q, Zhang X Y, Chen Z W, Chang Y J and Pei Y Z 2017 Adv. Mater. 29 1605887 [22] Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y and Pei Y 2018 Adv. Funct. Mater. 28 1803586 [23] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J and Pei Y 2018 Joule 2 976 [24] Tang Y, Gibbs Z M, Agapito L A, Li G, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223 [25] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601 [26] Jin M, Zheng L, Sun C, Jiang L, Meng X, Chen Q and Li W 2021 Chem. Eng. J. 420 130530 [27] Pei Y, LaLonde A D, Wang H and Snyder G J 2012 Energy & Environmental Science 5 7963 [28] Wang H, LaLonde A D, Pei Y and Snyder G J 2013 Adv. Funct. Mater. 23 1586 [29] You L, Zhang J, Pan S, Jiang Y, Wang K, Yang J, Pei Y, Zhu Q, Agne M T, Snyder G J, Ren Z, Zhang W and Luo J 2019 Energy & Environmental Science 12 3089 [30] Jood P, Ohta M, Yamamoto A and Kanatzidis M G 2018 Joule 2 1339 [31] Li S, Xin J, Basit A, Long Q, Li S, Jiang Q, Luo Y and Yang J 2020 Adv. Sci. (Weinh) 7 1903493 [32] Guo F, Cui B, Li C, Wang Y, Cao J, Zhang X, Ren Z, Cai W and Sui J 2021 Adv. Funct. Mater. 31 2101554 [33] Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X and Chen L 2021 Energy & Environmental Science 14 995 [34] Xing T, Zhu C, Song Q, Huang H, Xiao J, Ren D, Shi M, Qiu P, Shi X, Xu F and Chen L 2021 Adv. Mater. 33 2008773 [35] Li J, Chen Z W, Zhang X Y, Sun Y X, Yang J and Pei Y Z 2017 NPG Asia Materials 9 e353 [36] Liu H X, Zhang X Y, Bu Z L, Li W and Pei Y Z 2022 Rare Metals 41 921 [37] Levin E M, Bud'ko S L and Schmidt-Rohr K 2012 Adv. Funct. Mater. 22 2766 [38] Levin E M, Cook B A, Harringa J L, Bud'ko S L, Venkatasubramanian R and Schmidt-Rohr K 2011 Adv. Funct. Mater. 21 441 [39] Rodenkirchen C, Cagnoni M, Jakobs S, Cheng Y D, Keutgen J, Yu Y, Wuttig M and Cojocaru-Miredin O 2020 Adv. Funct. Mater. 30 1910039 [40] Zhu T, Gao H, Chen Y and Zhao X 2014 J. Mater. Chem. A 2 3251 [41] Hong M, Chen Z G, Yang L, Liao Z M, Zou Y C, Chen Y H, Matsumura S and Zou J 2018 Advanced Energy Materials 8 1702333 [42] Chattopadhyay T, Boucherle J X and Vonschnering H G 1987 J. Phys. C:Solid State Phys. 20 1431 [43] Baleva M I and Plachkova S K 1983 JJ. Phys. C:Solid State Phys. 16 791 [44] Plachkova S K 1984 Physica Status Solidi (a) 83 349 [45] Chen Y, Jaworski C M, Gao Y B, Wang H, Zhu T J, Snyder G J, Heremans J P and Zhao X B 2014 New J. Phys. 16 013057 [46] Cook B A, Kramer M J, Wei X, Harringa J L and Levin E M 2007 J. Appl. Phys. 101 053715 [47] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818 [48] Cook B A, Wei X, Harringa J L and Kramer M J 2007 Journal of Materials Science 42 7643 [49] Yang S H, Zhu T J, Sun T, He J, Zhang S N and Zhao X B 2008 Nanotechnology 19 245707 [50] Kumar A, Vermeulen P A, Kooi B J, Rao J, van Eijck L, Schwarzmuller S, Oeckler O and Blake G R 2017 Inorg. Chem. 56 15091 [51] Davidow J and Gelbstein Y 2012 Journal of Electronic Materials 42 1542 [52] Thompson A, Sharp J, Rawn C J and Chackoumakos B C 2007 Mater. Res. Soc. Symp. P 1044 1044-U03-09 [53] Kumar A, Vermeulen P A, Kooi B J, Rao J, Schwarzmüller S, Oeckler O and Blake G R 2018 RSC Advances 8 42322 [54] Cook B A, Harringa J L, Besser M and Venkatasubramanian R 2011 Mater. Res. Soc. 1325 703 [55] Kim B S, Kim I H, Lee J K, Min B K, Oh M W, Park S D, Lee H W and Kim M H 2010 Electronic Materials Letters 6 181 [56] Dong Y, Malik A S and DiSalvo F J 2010 Journal of Electronic Materials 40 17 [57] Skrabek E A and Trimmer D S 1972 US Patent 3 945[1976-3-23] [58] Zybala R 2020 Synthetic Metals 270 116606 [59] Salvador J R, Yang J, Shi X, Wang H and Wereszczak A A 2009 J. Solid State Chem. 182 2088 [60] Lyu W Y, Hong M, Liu W D, Li M, Sun Q, Xu S D, Zou J and Chen Z G 2021 Energy Material Advances 2021 2414286 [61] Christakudis G C, Plachkova S K, Shelimova L E and Avilov E S 1991 Physica Status Solidi (a) 128 465 [62] Chen Y, Zhu T J, Yang S H, Zhang S N, Miao W and Zhao X B 2010 Journal of Electronic Materials 39 1719 [63] Jin J, Zhu T J, Liu X H and Zhao X B 2013 Journal of Materials Science and Engineering 31 204 (in Chinese) [64] Schroder T, Rosenthal T, Giesbrecht N, Nentwig M, Maier S, Wang H, Snyder G J and Oeckler O 2014 Inorg. Chem. 53 7722 [65] Yang S H, Zhu T J, Yu C, Shen J J, Yin Z Z and Zhao X B 2011 Journal of Electronic Materials 40 1244 [66] Schröder T, Rosenthal T, Giesbrecht N, Maier S, Scheidt E W, Scherer W, Snyder G J, Schnick W and Oeckler O 2014 J. Mater. Chem. A 2 6384 [67] Chen Z, Zhang X, Lin S, Chen L and Pei Y 2018 National Science Review 5 888 [68] Snyder G J, T. Agne M and Gurunathan R 2018 National Science Review 6 380 [69] Luo Y, Cai S, Hua X, Chen H, Liang Q, Du C, Zheng Y, Shen J, Xu J, Wolverton C, Dravid V P, Yan Q and Kanatzidis M G 2018 Advanced Energy Materials 9 1803072 [70] Zhu T J, Zhang S N, Yang S H and Zhao X B 2010 Physica Status Solidi (RRL)-Rapid Research Letters 4 317 [71] Skrabek E A and Trimmer D S 1995 Properties of the general TAGS system. In CRC handbook of thermoelectrics (Boca Raton, FL:CRC Press) pp. 267——275 [72] Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V and Bhanumurthy K 2009 J. Phys. D:Appl. Phys. 42 015502 [73] Thomas P, Cook B, Stokes D, Krueger G and Venkatasubramanian R 2012 Proc. of SPIE 8377 83770H-1 [74] Bulman G and Cook B 2014 Proc. SPIE 9115 911507-1 [75] Cook B A, Chan T E, Dezsi G, Thomas P, Koch C C, Poon J, Tritt T and Venkatasubramanian R 2015 Journal of Electronic Materials 44 1936 [76] Kim H S, Dharmaiah P and Hong S J 2017 Journal of Electronic Materials 47 3119 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|