Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047401    DOI: 10.1088/1674-1056/ac3cae
Special Issue: TOPICAL REVIEW — Progress in thermoelectric materials and devices
TOPICAL REVIEW—Progress in thermoelectric materials and devices Prev   Next  

Advances in thermoelectric (GeTe)x(AgSbTe2)100-x

Hongxia Liu(刘虹霞)1,2, Xinyue Zhang(张馨月)3, Wen Li(李文)3,†, and Yanzhong Pei(裴艳中)3,‡
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2 Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China;
3 Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Abstract  The (GeTe)x(AgSbTe2)100-x alloys, also called TAGS-x in short, have long been demonstrated as a promising candidate for thermoelectric applications with successful services as the p-type leg in radioisotope thermoelectric generators for space missions. This largely stems from the complex band structure for a superior electronic performance and strong anharmonicity for a low lattice thermal conductivity. Utilization of the proven strategies including carrier concentration optimization, band and defects engineering, an extraordinary thermoelectric figure of merit, zT, has been achieved in TAGS-based alloys. Here, crystal structure, band structure, microstructure, synthesis techniques and thermoelectric transport properties of TAGS-based alloys, as well as successful strategies for manipulating the thermoelectric performance, are surveyed with opportunities for further advancements. These strategies involved are believed to be in principle applicable for advancing many other thermoelectrics.
Keywords:  thermoelectric      TAGS      band structure      lattice thermal conductivity      thermoelectric figure of merit  
Received:  11 October 2021      Revised:  16 November 2021      Accepted manuscript online:  24 November 2021
PACS:  74.25.fg (Thermoelectric effects)  
  74.25.fc (Electric and thermal conductivity)  
  74.25.F- (Transport properties)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. T2125008, 92163203, and 52022068), the Innovation Program of Shanghai Municipal Education Commission, the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020007), the Shanghai Natural Science Foundation (Grant No. 19ZR1459900), Taiyuan University of Science and Technology Scientific Research Initial Funding (No. 20222002), and the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, No. 2022-KF-32).
Corresponding Authors:  Wen Li, Yanzhong Pei     E-mail:;

Cite this article: 

Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中) Advances in thermoelectric (GeTe)x(AgSbTe2)100-x 2022 Chin. Phys. B 31 047401

[1] He R, Zhu H, Sun J, Mao J, Reith H, Chen S, Schierning G, Nielsch K and Ren Z 2017 Materials Today Physics 1 24
[2] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Advanced Electronic Materials 2 1600019
[3] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211
[4] Yu F, Meng X, Cheng J, Liu J P, Yao Y L and Li J 2019 J. Alloys Compd. 797 940
[5] Galazka K, Xie W, Populoh S, Aguirre M H and Weidenkaff A 2020 Rare Metals 39 659
[6] Wang R F, Li S, Xue W H, Chen C, Wang Y M, Liu X J and Zhang Q 2020 Rare Metals 40 40
[7] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J and Pei Y 2017 Nat. Commun. 8 13828
[8] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109
[9] Vineis C, Shakouri A, Majumdar A and Kanatzidis M 2010 Adv. Mater. 22 3970
[10] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
[11] Jiang W, Ma L and Xu X 2019 Bio-Design and Manufacturing 2 24
[12] Han Q, Chen Y, Song W, Zhang M, Wang S, Ren P, Hao L, Wang A, Bai S and Yin J 2019 Bio-Design and Manufacturing 2 269
[13] Snyder G, Christensen M, Nishibori E, Caillat T and Iversen B 2004 Nat. Mater. 3 458
[14] Liu H X, Deng S P, Li D C, Shen L X and Deng S K 2017 Chin. Phys. B 26 027401
[15] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422
[16] Li W, Lin S, Ge B, Yang J, Zhang W and Pei Y 2016 Advanced Science 3 1600196
[17] Liu H X, Li W, Shen H W, Zhang X Y, Lin S Q and Pei Y Z 2020 Annalen der Physik 532 1900561
[18] Zhang X, Chen Z, Lin S, Zhou B, Gao B and Pei Y 2017 ACS Energy Letters 2 2470
[19] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[20] Lin S, Li W, Chen Z, Shen J, Ge B and Pei Y 2016 Nat. Commun. 7 10287
[21] Li W, Zheng L L, Ge B H, Lin S Q, Zhang X Y, Chen Z W, Chang Y J and Pei Y Z 2017 Adv. Mater. 29 1605887
[22] Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y and Pei Y 2018 Adv. Funct. Mater. 28 1803586
[23] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J and Pei Y 2018 Joule 2 976
[24] Tang Y, Gibbs Z M, Agapito L A, Li G, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223
[25] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[26] Jin M, Zheng L, Sun C, Jiang L, Meng X, Chen Q and Li W 2021 Chem. Eng. J. 420 130530
[27] Pei Y, LaLonde A D, Wang H and Snyder G J 2012 Energy & Environmental Science 5 7963
[28] Wang H, LaLonde A D, Pei Y and Snyder G J 2013 Adv. Funct. Mater. 23 1586
[29] You L, Zhang J, Pan S, Jiang Y, Wang K, Yang J, Pei Y, Zhu Q, Agne M T, Snyder G J, Ren Z, Zhang W and Luo J 2019 Energy & Environmental Science 12 3089
[30] Jood P, Ohta M, Yamamoto A and Kanatzidis M G 2018 Joule 2 1339
[31] Li S, Xin J, Basit A, Long Q, Li S, Jiang Q, Luo Y and Yang J 2020 Adv. Sci. (Weinh) 7 1903493
[32] Guo F, Cui B, Li C, Wang Y, Cao J, Zhang X, Ren Z, Cai W and Sui J 2021 Adv. Funct. Mater. 31 2101554
[33] Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X and Chen L 2021 Energy & Environmental Science 14 995
[34] Xing T, Zhu C, Song Q, Huang H, Xiao J, Ren D, Shi M, Qiu P, Shi X, Xu F and Chen L 2021 Adv. Mater. 33 2008773
[35] Li J, Chen Z W, Zhang X Y, Sun Y X, Yang J and Pei Y Z 2017 NPG Asia Materials 9 e353
[36] Liu H X, Zhang X Y, Bu Z L, Li W and Pei Y Z 2022 Rare Metals 41 921
[37] Levin E M, Bud'ko S L and Schmidt-Rohr K 2012 Adv. Funct. Mater. 22 2766
[38] Levin E M, Cook B A, Harringa J L, Bud'ko S L, Venkatasubramanian R and Schmidt-Rohr K 2011 Adv. Funct. Mater. 21 441
[39] Rodenkirchen C, Cagnoni M, Jakobs S, Cheng Y D, Keutgen J, Yu Y, Wuttig M and Cojocaru-Miredin O 2020 Adv. Funct. Mater. 30 1910039
[40] Zhu T, Gao H, Chen Y and Zhao X 2014 J. Mater. Chem. A 2 3251
[41] Hong M, Chen Z G, Yang L, Liao Z M, Zou Y C, Chen Y H, Matsumura S and Zou J 2018 Advanced Energy Materials 8 1702333
[42] Chattopadhyay T, Boucherle J X and Vonschnering H G 1987 J. Phys. C:Solid State Phys. 20 1431
[43] Baleva M I and Plachkova S K 1983 JJ. Phys. C:Solid State Phys. 16 791
[44] Plachkova S K 1984 Physica Status Solidi (a) 83 349
[45] Chen Y, Jaworski C M, Gao Y B, Wang H, Zhu T J, Snyder G J, Heremans J P and Zhao X B 2014 New J. Phys. 16 013057
[46] Cook B A, Kramer M J, Wei X, Harringa J L and Levin E M 2007 J. Appl. Phys. 101 053715
[47] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818
[48] Cook B A, Wei X, Harringa J L and Kramer M J 2007 Journal of Materials Science 42 7643
[49] Yang S H, Zhu T J, Sun T, He J, Zhang S N and Zhao X B 2008 Nanotechnology 19 245707
[50] Kumar A, Vermeulen P A, Kooi B J, Rao J, van Eijck L, Schwarzmuller S, Oeckler O and Blake G R 2017 Inorg. Chem. 56 15091
[51] Davidow J and Gelbstein Y 2012 Journal of Electronic Materials 42 1542
[52] Thompson A, Sharp J, Rawn C J and Chackoumakos B C 2007 Mater. Res. Soc. Symp. P 1044 1044-U03-09
[53] Kumar A, Vermeulen P A, Kooi B J, Rao J, Schwarzmüller S, Oeckler O and Blake G R 2018 RSC Advances 8 42322
[54] Cook B A, Harringa J L, Besser M and Venkatasubramanian R 2011 Mater. Res. Soc. 1325 703
[55] Kim B S, Kim I H, Lee J K, Min B K, Oh M W, Park S D, Lee H W and Kim M H 2010 Electronic Materials Letters 6 181
[56] Dong Y, Malik A S and DiSalvo F J 2010 Journal of Electronic Materials 40 17
[57] Skrabek E A and Trimmer D S 1972 US Patent 3 945[1976-3-23]
[58] Zybala R 2020 Synthetic Metals 270 116606
[59] Salvador J R, Yang J, Shi X, Wang H and Wereszczak A A 2009 J. Solid State Chem. 182 2088
[60] Lyu W Y, Hong M, Liu W D, Li M, Sun Q, Xu S D, Zou J and Chen Z G 2021 Energy Material Advances 2021 2414286
[61] Christakudis G C, Plachkova S K, Shelimova L E and Avilov E S 1991 Physica Status Solidi (a) 128 465
[62] Chen Y, Zhu T J, Yang S H, Zhang S N, Miao W and Zhao X B 2010 Journal of Electronic Materials 39 1719
[63] Jin J, Zhu T J, Liu X H and Zhao X B 2013 Journal of Materials Science and Engineering 31 204 (in Chinese)
[64] Schroder T, Rosenthal T, Giesbrecht N, Nentwig M, Maier S, Wang H, Snyder G J and Oeckler O 2014 Inorg. Chem. 53 7722
[65] Yang S H, Zhu T J, Yu C, Shen J J, Yin Z Z and Zhao X B 2011 Journal of Electronic Materials 40 1244
[66] Schröder T, Rosenthal T, Giesbrecht N, Maier S, Scheidt E W, Scherer W, Snyder G J, Schnick W and Oeckler O 2014 J. Mater. Chem. A 2 6384
[67] Chen Z, Zhang X, Lin S, Chen L and Pei Y 2018 National Science Review 5 888
[68] Snyder G J, T. Agne M and Gurunathan R 2018 National Science Review 6 380
[69] Luo Y, Cai S, Hua X, Chen H, Liang Q, Du C, Zheng Y, Shen J, Xu J, Wolverton C, Dravid V P, Yan Q and Kanatzidis M G 2018 Advanced Energy Materials 9 1803072
[70] Zhu T J, Zhang S N, Yang S H and Zhao X B 2010 Physica Status Solidi (RRL)-Rapid Research Letters 4 317
[71] Skrabek E A and Trimmer D S 1995 Properties of the general TAGS system. In CRC handbook of thermoelectrics (Boca Raton, FL:CRC Press) pp. 267——275
[72] Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V and Bhanumurthy K 2009 J. Phys. D:Appl. Phys. 42 015502
[73] Thomas P, Cook B, Stokes D, Krueger G and Venkatasubramanian R 2012 Proc. of SPIE 8377 83770H-1
[74] Bulman G and Cook B 2014 Proc. SPIE 9115 911507-1
[75] Cook B A, Chan T E, Dezsi G, Thomas P, Koch C C, Poon J, Tritt T and Venkatasubramanian R 2015 Journal of Electronic Materials 44 1936
[76] Kim H S, Dharmaiah P and Hong S J 2017 Journal of Electronic Materials 47 3119
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[9] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[14] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!