Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046105    DOI: 10.1088/1674-1056/ac1f0b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy

Yutao Liu(刘玉涛)1, Tinghong Gao(高廷红)1,†, Yue Gao(高越)1, Lianxin Li(李连欣)1, Min Tan(谭敏)1, Quan Xie(谢泉)1, Qian Chen(陈茜)1, Zean Tian(田泽安)1,2, Yongchao Liang(梁永超)1, and Bei Wang(王蓓)1
1 Institute of New Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
Abstract  Two-phase γ-TiAl/α2-Ti3Al lamellar intermetallics have attracted considerable attention because of their excellent strength and plasticity. However, the exact deformation mechanisms remain to be investigated. In this paper, a solidified lamellar Ti-Al alloy with lamellar orientation at 0°, 17°, and 73° with respect to the loading direction was stretched by utilizing molecular dynamics (MD) simulations. The results show that the mechanical properties of the sample are considerably influenced by solidified defects and tensile directions. The structure deformation and fracture were primarily attributed to an intrinsic stacking fault (ISF) accompanied by the nucleated Shockley dislocation, and the adjacent extrinsic stacking fault (ESF) and ISF formed by solidification tend to form large HCP structures during the tensile process loading at 73°. Moreover, cleavage cracking easily occurs on the γ/α2 interface under tensile deformation. The fracture loading mechanism at 17° is grain boundary slide whereas, at 73° and 0°, the dislocation piles up to form a dislocation junction.
Keywords:  molecular dynamics simulation      solidified lamellar Ti-Al alloy      tensile directions      γ/α2 interface  
Received:  03 July 2021      Revised:  10 August 2021      Accepted manuscript online:  19 August 2021
PACS:  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  83.50.-v (Deformation and flow ?)  
  81.40.Lm (Deformation, plasticity, and creep)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51761004, 51661005, and 11964005), Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061), the Guizhou Province Science and Technology Fund, China (Grant Nos. ZK[2021] 051,[2017] 5788, and J[2015] 2050), High Level Creative Talent in Guizhou Education Department of China, and the Cooperation Project of Science and Technology of Guizhou Province, China (Grant No. LH[2016] 7430).
Corresponding Authors:  Tinghong Gao     E-mail:  gaotinghong@sina.com

Cite this article: 

Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓) Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy 2022 Chin. Phys. B 31 046105

[1] Tian Y B, Shen J Q, Hu S S, Gou J and Cui Y 2021 J. Mater. Sci. Technol. 74 35
[2] Rittinghaus S K and Wilms M B 2019 J. Alloys Compd. 804 457
[3] Appel F and Wagner R 1998 Mater. Sci. Eng. 22 187
[4] Umer Ilyas M and Rizviul Kabir M 2021 Intermetallics 132 107129
[5] Umer Ilyas M and Rizviul Kabir M 2020 J. Mater. Sci. Eng. A 788 139524
[6] Mathabathe M N, Bolokang A S, Govender G, Mostert R J and Siyasiya C W 2018 J. Alloys Compd. 765 690
[7] Neogia A and Janisch R 2021 Acta Mater. 213 116924
[8] Li W, Yin Y J, Xu Q, Zhou J X, Nan H, Ji X Y, Shen X, Feng X, Yu W, Tu Z X and Pang N 2019 Comput. Mater. Sci. 159 397
[9] Palomares-García A J, Perez-Prado MT and Molina-Aldareguia J M 2017 Acta Mater. 123 102
[10] Paidar V, Kishida K and Yamaguchi M 2003 J. Mater. Res. 18 702
[11] Chen G, Peng Y B, Zheng G, Qi Z X, Wang M Z, Yu H C, Dong C L and Liu C T 2016 Nat. Mater. 15 876
[12] Palomares-García A J, Perez-Prado M T and Molina-Aldareguia J M 2017 Acta Mater. 123 102
[13] Pan Q S, Zhou H F, Lu Q H, Gao H J and Lu L 2017 Nature 551 214
[14] Li P T, Yang Y Q, Koval V, Chen J X, Luo X, Zhang W, Wang B and Yan H X 2021 Mater. Des. 199 109422
[15] Han X L, Liu P, Sun D L and Wang Q 2019 Theor. Appl. Fract. Mech. 101 217
[16] Zhang L, Lü C, Kiet T, Pei L Q and Zhao X 2014 Chin. Phys. B 23 098102
[17] Xie Z C, Gao T H, Guo X T and Xie Q 2015 Comput. Mater. Sci. 98 245
[18] Li P T, Yang Y Q, Xia Z H, Luo X, Jin N, Gao Y and Liu G 2017 RSC Adv. 7 48315
[19] Pei Q X, Lu C and Fu M W 2004 J. Phys.:Condens. Matter. 16 4203
[20] Shimono M and Onodera H 2001 J. Mater. Sci. Eng. A 304-306 515
[21] Appel F, Brossmann U and Christoph U 2000 Adv. Eng. Mater. 2 699
[22] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[23] Stukowski A, Bulatov V V and Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007
[24] Montealegre-Meléndez I, Arévalo C, Pérez-Soriano E, M, Kitzmantel M and Neubauer E 2018 Metals 8 367
[25] Li P T, Yang Y Q, Zhang W, Luo X, Jin N and Liu G 2016 RSC Adv. 6 54763
[26] Yoo M H and Fu C L 1998 Metall. Mater. Trans. A 29 49
[27] Qi Y M. Zhao M and Feng M L J 2021 Alloys Compd. 851 156923
[28] Kishida K, Inui H and Yamaguchi M 1998 Philos. Mag. 78 1
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[9] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[10] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[11] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[12] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
No Suggested Reading articles found!