Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030302    DOI: 10.1088/1674-1056/ac1efb
GENERAL Prev   Next  

Probabilistic resumable quantum teleportation in high dimensions

Xiang Chen(陈想)1, Jin-Hua Zhang(张晋华)2,3, and Fu-Lin Zhang(张福林)1,†
1 Department of Physics, School of Science, Tianjin University, Tianjin 300072, China;
2 Department of Physics, Xinzhou Teacher's University, Xinzhou 034000, China;
3 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract  Teleportation is a quantum information process without classical counterparts, in which the sender can disembodiedly transfer unknown quantum states to the receiver. In probabilistic teleportation through a partial entangled quantum channel, the transmission is exact (with fidelity 1), but may fail in a probability and the initial state is destroyed simultaneously. We propose a scheme for nondestructive probabilistic teleportation of high-dimensional quantum states. With the aid of an ancilla in the hands of the sender, the initial quantum information can be recovered when teleportation fails. The ancilla acts as a quantum apparatus to measure the sender's subsystem. Erasing the information recorded in it can resume the initial state.
Keywords:  probabilistic teleportation      entanglement      successful probability  
Received:  15 May 2021      Revised:  08 July 2021      Accepted manuscript online:  19 August 2021
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675119 and 11575125) and Shanxi Education Department Fund, China (Grant No. 2020L0543).
Corresponding Authors:  Fu-Lin Zhang     E-mail:  flzhang@tju.edu.cn

Cite this article: 

Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林) Probabilistic resumable quantum teleportation in high dimensions 2022 Chin. Phys. B 31 030302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) pp. 571-582
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Brunner N, Gisin N and Scarani V 2005 New J. Phys. 7 88
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[5] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[6] Banaszek K 2000 Phys. Rev. A 62 024301
[7] Roa L, Delgado A and Fuentes-Guridi I 2003 Phys. Rev. A 68 022310
[8] Verstraete F and Verschelde H 2003 Phys. Rev. Lett. 90 097901
[9] Roa L and Groiseau C 2015 Phys. Rev. A 91 012344
[10] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[11] Li X H and Ghose S 2014 Phys. Rev. A 90 052305
[12] Zhang F L, Chen J L, Kwek L C and Vedral V 2013 Sci. Rep. 3 2134
[13] Zhang F L and Wang T 2017 Europhys. Lett. 117 10013
[14] Chen X, Shen Y and Zhang F L 2020 preprint arXiv:2101.06693
[15] Huang Y and Yang W 2020 Chinese Journal of Electronics 29 228
[16] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
[17] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 230501
[18] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[19] Boschi D, Branca S, Martini F D, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[20] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H L and Polzik E S 1998 Science 282 706
[21] Gottesman D and Chuang I L 1999 Nature 402 390
[22] Nolleke C, Neuzner A, Reiserer A, Hahn C, Rempe G and Ritter S 2013 Phys. Rev. Lett. 110 140403
[23] Pfaff W, Hensen B, Bernien H, van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532
[24] Torres J M, Bernad J Z and Alber G 2014 Phys. Rev. A 90 012304
[25] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[26] Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651
[27] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[28] Townsend P 1997 Nature 385 47
[29] Aoun B and Tarifi M 2004 arXiv:quant-ph/0401076
[30] Gou Y T, Shi H L, Wang X H and Liu S Y 2017 Quantum. Inf. Process 16 278
[31] Wang Z Y, Gou Y T, Hou J X, Cao L K and Wang X H 2019 Entropy 21 352
[32] Fu F and Jiang M 2020 J. Opt. Soc. Am. B 37 233
[33] Fu F, Li H, Xue S and Jiang M 2020 J. Opt. Soc. Am. B 37 1896
[34] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[35] Bergou J, Feldman E and Hillery M 2013 Phys. Rev. Lett. 111 100501
[36] Pang C Q, Zhang F L, Xu L F, Liang M L and Chen J L 2013 Phys. Rev. A 88 052331
[37] Zhang J H, Zhang F L and Liang M L 2018 Quantum Inf. Process. 17 260
[38] Zhang J H, Zhang F L, Wang Z X, Lai L M and Fei S M 2020 Phys. Rev. A 101 032316
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!