|
|
Probabilistic resumable quantum teleportation in high dimensions |
Xiang Chen(陈想)1, Jin-Hua Zhang(张晋华)2,3, and Fu-Lin Zhang(张福林)1,† |
1 Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; 2 Department of Physics, Xinzhou Teacher's University, Xinzhou 034000, China; 3 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China |
|
|
Abstract Teleportation is a quantum information process without classical counterparts, in which the sender can disembodiedly transfer unknown quantum states to the receiver. In probabilistic teleportation through a partial entangled quantum channel, the transmission is exact (with fidelity 1), but may fail in a probability and the initial state is destroyed simultaneously. We propose a scheme for nondestructive probabilistic teleportation of high-dimensional quantum states. With the aid of an ancilla in the hands of the sender, the initial quantum information can be recovered when teleportation fails. The ancilla acts as a quantum apparatus to measure the sender's subsystem. Erasing the information recorded in it can resume the initial state.
|
Received: 15 May 2021
Revised: 08 July 2021
Accepted manuscript online: 19 August 2021
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675119 and 11575125) and Shanxi Education Department Fund, China (Grant No. 2020L0543). |
Corresponding Authors:
Fu-Lin Zhang
E-mail: flzhang@tju.edu.cn
|
Cite this article:
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林) Probabilistic resumable quantum teleportation in high dimensions 2022 Chin. Phys. B 31 030302
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) pp. 571-582 [2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [3] Brunner N, Gisin N and Scarani V 2005 New J. Phys. 7 88 [4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [5] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301 [6] Banaszek K 2000 Phys. Rev. A 62 024301 [7] Roa L, Delgado A and Fuentes-Guridi I 2003 Phys. Rev. A 68 022310 [8] Verstraete F and Verschelde H 2003 Phys. Rev. Lett. 90 097901 [9] Roa L and Groiseau C 2015 Phys. Rev. A 91 012344 [10] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394 [11] Li X H and Ghose S 2014 Phys. Rev. A 90 052305 [12] Zhang F L, Chen J L, Kwek L C and Vedral V 2013 Sci. Rep. 3 2134 [13] Zhang F L and Wang T 2017 Europhys. Lett. 117 10013 [14] Chen X, Shen Y and Zhang F L 2020 preprint arXiv:2101.06693 [15] Huang Y and Yang W 2020 Chinese Journal of Electronics 29 228 [16] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505 [17] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 230501 [18] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575 [19] Boschi D, Branca S, Martini F D, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121 [20] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H L and Polzik E S 1998 Science 282 706 [21] Gottesman D and Chuang I L 1999 Nature 402 390 [22] Nolleke C, Neuzner A, Reiserer A, Hahn C, Rempe G and Ritter S 2013 Phys. Rev. Lett. 110 140403 [23] Pfaff W, Hensen B, Bernien H, van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532 [24] Torres J M, Bernad J Z and Alber G 2014 Phys. Rev. A 90 012304 [25] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33 [26] Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651 [27] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822 [28] Townsend P 1997 Nature 385 47 [29] Aoun B and Tarifi M 2004 arXiv:quant-ph/0401076 [30] Gou Y T, Shi H L, Wang X H and Liu S Y 2017 Quantum. Inf. Process 16 278 [31] Wang Z Y, Gou Y T, Hou J X, Cao L K and Wang X H 2019 Entropy 21 352 [32] Fu F and Jiang M 2020 J. Opt. Soc. Am. B 37 233 [33] Fu F, Li H, Xue S and Jiang M 2020 J. Opt. Soc. Am. B 37 1896 [34] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402 [35] Bergou J, Feldman E and Hillery M 2013 Phys. Rev. Lett. 111 100501 [36] Pang C Q, Zhang F L, Xu L F, Liang M L and Chen J L 2013 Phys. Rev. A 88 052331 [37] Zhang J H, Zhang F L and Liang M L 2018 Quantum Inf. Process. 17 260 [38] Zhang J H, Zhang F L, Wang Z X, Lai L M and Fei S M 2020 Phys. Rev. A 101 032316 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|