CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
A new direct band gap silicon allotrope o-Si32 |
Xin-Chao Yang(杨鑫超)1, Qun Wei(魏群)1,†, Mei-Guang Zhang(张美光)2, Ming-Wei Hu(胡明玮)1, Lin-Qian Li(李林茜)1, and Xuan-Min Zhu(朱轩民)3,‡ |
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721016, China; 3 School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China |
|
|
Abstract Silicon is a preferred material in solar cells, and most of silicon allotropes have an indirect band gap. Therefore, it is important to find new direct band gap silicon. In the present work, a new direct band gap silicon allotrope of o-Si32 is discovered. The elastic constants, elastic anisotropy, phonon spectra, and electronic structure of o-Si32 are obtained using first-principles calculations. The results show that o-Si32 is mechanically and dynamically stable and is a direct semiconductor material with a band gap of 1.261 eV.
|
Received: 28 April 2021
Revised: 20 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
61.72.uf
|
(Ge and Si)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965005 and 11964026), the 111 Project, China (Grant No. B17035), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2020JM-186 and 2020JM-621), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Qun Wei, Xuan-Min Zhu
E-mail: weiaqun@163.com;zhuxuanmin2006@163.com
|
Cite this article:
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民) A new direct band gap silicon allotrope o-Si32 2022 Chin. Phys. B 31 026104
|
[1] Hybertsen M S and Louie S G 1985 Phys. Rev. Lett. 55 1418 [2] Besson J M, Mokhtari E H, Gonzalez J and Weill G 1987 Phys. Rev. Lett. 59 473 [3] Jelle B P, Breivik C and Rokenes H D 2012 Sol. Energy Mater. Sol. Cells. 100 69 [4] De A and Pryor C E 2014 J. Phys.:Condens. Matter 26 045801 [5] Zhao Z, Tian F, Dong X, Li Q, Wang Q, Wang H, Zhong X, Xu B, Yu D, He J, Wang H T, Ma Y and Tian Y 2012 J. Am. Chem. Soc. 134 12362 [6] Fan Q, Chai C, Wei Q, Yan H, Bo Y, Yang Y, Yu X, Liu Y, Xing M, Zhang J and Yao R 2015 J. Appl. Phys. 118 185704 [7] Xiang H J, Huang B, Kan E, Wei S H and Gong X G 2013 Phys. Rev. Lett. 110 118702 [8] Oh Y J, Lee I H, Kim S, Lee J and Chang K J 2015 Sci. Rep. 5 18086 [9] Fan Q, Wang H, Zhang W, Wei M, Song Y, Zhang W and Yun S 2019 Curr. Appl. Phys. 19 1325 [10] Amsler M, Botti S, Marques M A L, Lenosky T J and Goedecker S 2015 Phys. Rev. B 92 014101 [11] Wang Q, Xu B, Sun J, Liu H, Zhao Z, Yu D, Fan C and He J 2014 J. Am. Chem. Soc. 136 9826 [12] Botti S, Flores-Livas J A, Amsler M, Goedecker S and Marques M A L 2102 Phys. Rev. B 86 121204 [13] Fan Q, Chai C, Wei Q and Yang Y 2016 Phys. Chem. Chem. Phys. 18 12905 [14] Guo Y, Wang Q, Kawazoe Y and Jena P 2015 Sci. Rep. 5 14342 [15] Wei Q, Tong W, Wei B, Zhang M and Peng X 2019 Phys. Chem. Chem. Phys. 21 19963 [16] Wei Q, Yang X, Hu M, Yan H, Tong W, Yang R, Zhang M, Zhu X and Zhang R 2020 Chin. J. Phys. 68 778 [17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [18] Kohn W and Sham L J 1965 Phys. Rev. B 140 A1133 [19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [20] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112 [21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [23] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [24] Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906 [25] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [26] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [27] Wei Q, Yang X, Wei B, Hu M, Tong W, Yang R, Yan H, Zhang M, Zhu X and Yao R 2020 Solid State Commun. 319 113994 [28] Hill R 1952 Proc. Phys. Soc. A 65 349 [29] Yang X, Wei Q, Wei B, Yan Y, Yang R, Zhang M, Chen Q, Wang X, Yao R, Zhao C and Ding C 2019 Acta Phys. Pol. A 136 940 [30] Wei Q, Zhao C, Zhang M, Yan H, Zhou Y and Yao R 2018 Phys. Lett. A 382 1685 [31] Pugh S F 1954 Lond. Edinb. Dubl. Phil. Mag. 45 823 [32] Cao A H, Zhao W J, Zhou Q Y, Liu S L and Gan L H 2019 Chem. Phys. Lett. 714 119 [33] Qiu S, Clausen B, Padula S A, Noebe R D and Vaidyanathan R 2011 Acta Mater. 59 5055 [34] Fan Q, Wei Q, Chai C, Zhang M, Yan H, Zhang Z, Zhang J and Zhang D 2015 Comput. Mater. Sci. 97 6 [35] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|