ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-fidelity resonant tunneling passage in three-waveguide system |
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚)†, Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军) |
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract An N-stage three-waveguide system is proposed to improve the robustness and the fidelity of the resonant tunneling passage. The analytic solutions to the tunneling dynamics at the output are derived. When the number of subsystems increases, tunneling efficiency approaches to 100% in a large range and resonant tunneling is robust against variations in the phase mismatch and peak tunneling rate.
|
Received: 22 April 2021
Revised: 14 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2018JM6064). |
Corresponding Authors:
Jian Shi
E-mail: shijian@xupt.edu.cn
|
Cite this article:
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军) High-fidelity resonant tunneling passage in three-waveguide system 2022 Chin. Phys. B 31 024202
|
[1] Bloch F 1946 Phys. Rev. 70 460 [2] Yatsenko L P, Shore B W, Halfmann T, Bergmann K and Vardi A 1999 Phys. Rev. A 60 R4237 [3] Rickes T, Yatsenko L P, Steuerwald S, Halfmann T, Shore B W, Vitanov N V and Bergmann K 2000 J. Chem. Phys. 113 534 [4] Vitanov N V, Yatsenko L P and Bergmann K 2003 Phys. Rev. A 68 043401 [5] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006 [6] Shi J, Ma R Q, Duan Z L, Liang M, Chai B Y and Dong J 2017 Chin. Phys. B 26 124214 [7] Liu Y X and Zhao B 2020 Chin. Phys. B 29 023103 [8] Dykhne A M 1962 Sov. Phys. JETP 14 941 [9] Davis J P and Pechukas P 1976 J. Chem. Phys. 64 3129 [10] Vasilev G S, Kuhn A and Vitanov N V 2009 Phys. Rev. A 80 013417 [11] Guérin S, Hakobyan V and Jauslin H R 2011 Phys. Rev. A 84 013423 [12] Dridi G, Guérin S, Hakobyan V, Jauslin H R and Eleuch H 2009 Phys. Rev. A 80 043408 [13] Shapiro E A, Milner V, Menzel-Jones C and Shapiro M 2007 Phys. Rev. Lett. 99 033002 [14] Shapiro E A, Milner V and Shapiro M 2009 Phys. Rev. A 79 023422 [15] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martinez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 [16] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306 [17] Torosov B T, Della Valle G and Longhi S 2013 Phys. Rev. A 87 052502 [18] Torosov B T, Guérin S and Vitanov N V 2011 Phys. Rev. Lett. 106 233001 [19] Dou F Q, Cao H, Liu J and Fu L B 2016 Phys. Rev. A 93 043419 [20] Torosov B T and Vitanov N V 2013 Phys. Rev. A 87 043418 [21] Bruns A, Genov G T, Hain M, Vitanov N V and Halfmann T 2018 Phys. Rev. A 98 053413 [22] Longhi S 2009 Laser Photon. Rev. 3 243 [23] Ma R Q, Chai B Y, Liang M, Duan Z L, Zhang W W, Dong J and Shi J 2019 Opt. Commun. 430 1 [24] Tseng S Y 2014 Opt. Lett. 39 6600 [25] Paul K and Sarma A K 2015 Phys. Rev. A 91 053406 [26] Chen X, Wen R D, Shi J L and Tseng S Y 2018 J. Opt. 20 045804 [27] Torosov B T, Della Valle G and Longhi S 2014 Phys. Rev. A 89 063412 [28] Hristova H S, Rangelov A A, Montemezzani G and Vitanov N V 2016 Phys. Rev. A 93 033802 [29] Paspalakis E 2006 Opt. Commun. 258 30 [30] Grigoryan G G, Nikoghosyan G V, Halfmann T, Pashayan-Leroy Y T, Leroy C and Guérin S 2009 Phys. Rev. A 80 033402 [31] Shi J, Ma R Q and Liu L 2020 J. Phys. Soc. Jpn. 89 064006 [32] Longhi S, Della Valle G, Ornigotti M and Laporta P 2007 Phys. Rev. B 76 201101 [33] Popescu V A and Puscas N N 2005 Opt. Commun. 254 197 [34] Liu H and Wei L F 2017 J. Lightwave Technol. 35 166 [35] Rangelov A A and Vitanov N V 2012 Phys. Rev. A 85 043407 [36] Vitanov N V 1998 J. Phys. B 31 709 [37] Della Valle G, Taccheo S, Laporta P, Sorbello G, Cianci E and Foglietti V 2006 Electron. Lett. 42 632 [38] Zhou J, Luo H, Wen S and Zeng Y 2009 Opt. Commun. 282 2670 [39] Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207 [40] Hope A P, Nguyen T G, Mitchell A and Greentree A D 2015 J. Phys. B 48 055503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|