Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120501    DOI: 10.1088/1674-1056/26/12/120501
GENERAL Prev   Next  

Linear synchronization and circuit implementation of chaotic system with complete amplitude control

Chun-Biao Li(李春彪)1,2, Wesley Joo-Chen Thio3, Julien Clinton Sprott4, Ruo-Xun Zhang(张若洵)5, Tian-Ai Lu(陆天爱)1,2
1. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
3. Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA;
4. Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA;
5. College of Teacher Education, Xingtai University, Xingtai 054001, China
Abstract  Although chaotic signals are considered to have great potential applications in radar and communication engineering, their broadband spectrum makes it difficult to design an applicable amplifier or an attenuator for amplitude conditioning. Moreover, the transformation between a unipolar signal and a bipolar signal is often required. In this paper, a more intelligent hardware implementation based on field programmable analog array (FPAA) is constructed for chaotic systems with complete amplitude control. Firstly, two chaotic systems with complete amplitude control are introduced, one of which has the property of offset boosting with total amplitude control, while the other has offset boosting and a parameter for partial control. Both cases can achieve complete amplitude control including amplitude rescaling and offset boosting. Secondly, linear synchronization is established based on the special structure of chaotic system. Finally, experimental circuits are constructed on an FPAA where the predicted amplitude control is realized through only two independent configurable analog module (CAM) gain values.
Keywords:  complete amplitude control      amplitude rescaling      offset boosting      linear synchronization  
Received:  11 July 2017      Revised:  22 August 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology, China (Grant No. 2016205), the Natural Science Foundation of the Jiangsu Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB120004), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Natural Science Foundation of Hebei Province, China (Grant No. A2015108010).
Corresponding Authors:  Chun-Biao Li     E-mail:  goontry@126.com,chunbiaolee@nuist.edu.cn

Cite this article: 

Chun-Biao Li(李春彪), Wesley Joo-Chen Thio, Julien Clinton Sprott, Ruo-Xun Zhang(张若洵), Tian-Ai Lu(陆天爱) Linear synchronization and circuit implementation of chaotic system with complete amplitude control 2017 Chin. Phys. B 26 120501

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374
[3] Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Syst. 38 453
[4] Cuomo K M, Oppenheim A V and Strogatz S H 1993 IEEE Trans. Circ. Syst. Ⅱ:Analog and Digital Signal Processing 40 626
[5] Leung H and Lo T 1993 IEEE J. Oceanic. Eng. 18 287
[6] Yang T 1995 Int. J. Circ. Theor. Appl. 23 611
[7] Zhou C and Lai C H 1999 Phys. Rev. E 60 320
[8] Corron N J and Hahs D W 1997 IEEE Trans. Circ. Syst. I:Fund. Th. Appl. 44 373
[9] Lin F Y and Liu J M 2004 IEEE J. Quantum Elect. 40 815
[10] Shi Z G, Qiao S, Chen K S, Cui W Z, Ma W, Jiang T and Ran L X 2007 Prog. Electromagn. Res. 77 1
[11] Liu Z, Zhu X H, Hu W and Jiang F 2007 Int. J. Bifur. Chaos 17 1735
[12] Murali K and Lakshmanan M 1998 Phys. Lett. A 241 303
[13] Yupapin P P and Suwancharoen W 2007 Opt. Commun. 280 343
[14] Wang A, Wang Y, and He H 2008 IEEE Photon. Tech. Lett. 20 1633
[15] Yu S and Chen G 2010 IEEE Trans. Circ. Syst. Ⅱ:Express Briefs 57 803
[16] Yu S, Chen G and Yu G 2011 IEEE Trans. Circ. Syst. Ⅱ:Express Briefs 58 314
[17] Yu S, Yu X and Chen G 2012 IEEE Trans. Circ. Syst. I:Fund. Th. Appl. 59 1015
[18] Sun K, He S, He Y and Yin L 2013 Acta Phys. Sin. 62 010501(in Chinese)
[19] Sun K, Wang X and Sprott J C 2010 Int.J. Bifur. Chaos 20 1209
[20] Xu B and Wang G 2017 Acta Phys. Sin. 66 020502(in Chinese)
[21] Li C and Sprott J C 2013 Nonlinear Dyn. 73 1335
[22] Li C, Sprott J C, Thio W and Zhu H 2014 IEEE Trans. Circ. Syst. Ⅱ:Express Briefs 61 977
[23] Li C, Sprott J C and Thio W 2015 Phys. Lett. A 379 888
[24] Li C, Sprott J C, Yuan Z and Li H 2015 Int. J.Bifur. Chaos 25 1530025
[25] Akutagawa T, Koshinaka H, Sato D, Takeda S, Noro S I, Takahashi H, Kumai R, Tokura, Y and Nakamura T 2009 Nat. Mater. 8 342
[26] Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B and Noh T W 2011 Phys. Rev. B 84 125305
[27] Marchi M D,Sacchetto D, Frache S, Zhang J, Gaillardon P E, Leblebici Y and Micheli G D 2012 IEEE International, Electron Devices Meeting (IEDM) San Francisco, CA pp. 841-844
[28] Li C, Pehlivan I and Sprott J C 2016 Turk. J. Elec. Eng. & Sci. 24 1
[29] Li C and Sprott J C 2016 Optik 127 10389
[30] Sprott J C 1994 Phys. Rev. E 50 647
[31] Sprott J C 1997 Am. J. Phys. 65 537
[32] Zhang R X, Yang S P and Liu Y L 2010 Acta Phys. Sin. 59 1549(in Chinese)
[33] Liu H, Li S G, Wang H X and Li G J 2017 Chin. Phys. B 26 030504
[34] Tong P and Chen S H 2017 Chin. Phys. B 26 050503
[35] Zhang X J, Wei A J and Li K Z 2016 Chin. Phys. B 25 038901
[36] Ouannas A and Grassi G 2016 Chin. Phys. B 25 090503
[37] Hu A and Xu Z 2008 Phys.Lett. A 372 3814
[38] Wang Z, Sun W, Wei Z and Xi X 2014 Kybernetika 50 616
[39] Cavuslu M A, Karakuzu C and Karakaya F 2012 Appl. Soft Comput. 12 2707
[40] Tuntas R 2015 Appl. Soft Comput. 12 237
[41] D'mello D R and Gulak P G 1998 Analog. Integr. Circ. S. 17 7
[42] Caponetto R, Mauro A D, Fortuna L and Frasca M 2005 Int. J. Bifur. Chaos 15 1829
[43] Kilic R and Dalkiran F Y 2009 Int. J. Bifur. Chaos 19 1339
[44] Kilic R and Dalkiran F Y 2010 Turk. J. Elec. Eng. & Comp. Sci. 18 647
[1] Embedding any desired number of coexisting attractors in memristive system
Chunbiao Li(李春彪), Ran Wang(王然), Xu Ma(马旭), Yicheng Jiang(姜易成), and Zuohua Liu(刘作华). Chin. Phys. B, 2021, 30(12): 120511.
No Suggested Reading articles found!