Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 034208    DOI: 10.1088/1674-1056/24/3/034208

Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field

Tang Xu-Bing (唐绪兵)a b, Gao Fang (高放)b, Wang Yao-Xiong (王耀雄)b, Kuang Sen (匡森)c, Shuang Feng (双丰)b c
a School of Mathematics & Physics Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China;
b Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China;
c Department of Automation, University of Science & Technology of China, Hefei 230027, China
Abstract  Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non- Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F≥0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively.
Keywords:  non-Gaussian operation      Bell measurements      robustness      fidelity  
Received:  03 December 2014      Revised:  30 January 2015      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).
Corresponding Authors:  Shuang Feng     E-mail:

Cite this article: 

Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰) Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field 2015 Chin. Phys. B 24 034208

[1] Dell'Anno F, De Siena S and Illuminati F 2006 Phys. Rep. Rev. Sect. Phys. Lett. 428 53
[2] Kim M S, Son W, Buzek V and Knight P L 2002 Phys. Rev. A 65 032323
[3] Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
[4] Dodonov V V and de Souza L A 2005 J. Opt. B 7 s490
[5] Wu R B, Chakrabarti R and Rabitz H 2008 Phys. Rev. A 77 052303
[6] Adesso G, Dell'Anno F, De Siena S, Illuminati F and Souza L A M 2009 Phys. Rev. A 79 040305(R)
[7] Wu R B, Li T F, Kofman A G, Zhang J, Liu Y X, Pashkin A, Tsai J S and Franco N 2013 Phys. Rev. A 87 022324
[8] Cerf N J, Kruger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
[9] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
[10] Marek P, Jeong H and Kim M S 2008 Phys. Rev. A 78 063811
[11] Zhang J, Liu Y X, Wu R B, Li C W and Tarn T J 2010 Phys. Rev. A 82 022101
[12] Zhang J, Wu R B, Liu Y X, Li C W and Tarn T J 2012 IEEE Trans. Automat. Control 57 1997
[13] Yanagisawa M 2009 Phys. Rev. Lett. 103 203601
[14] Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992 Phys. Rev. A 45 5193
[15] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401
[16] Wei L F, Wang J S and Xi D P 1999 J. Opt. B 1 619
[17] Xu X X, Yuan H C and Wang Y 2014 Chin. Phys. B 23 070301
[18] Xu X F, Wang S and Tang B 2014 Chin. Phys. B 23 024206
[19] Resch K J, Lundeen J S and Steinberg A M 2002 Phys. Rev. Lett. 89 037904
[20] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
[21] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
[22] Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
[23] Meekhof D M, Monroe C, King B E, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 76 1796
[24] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
[25] Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316
[26] Zavatta A, Fiurasek J and Bellini M 2011 Nat. Photon. 5 52
[27] Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2008 Phys. Rev. Lett. 101 233605
[28] Bartley T J, Donati G, Spring J B, Jin X M, Barbieri M, Datta A, Smith B J and Walmsley I A 2012 Phys. Rev. A 45 5193
[29] Yurke B 1986 Phys. Rev. Lett. 56 1515
[30] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[31] Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
[32] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[33] Zavatta A, Parigi V, Kim M S and Bellini M 2008 New J. Phys. 10 123006
[34] Zavatta A, Parigi V and Bellini M 2010 Nuovo Cimento Della Societa Italiana Di Fisica B-Basic Topics in Physics 125 547
[35] Rahimi-Keshari S, Kiesel T, Vogel W, Grandi s, Zavatta A and Bellini M 2013 Phys. Rev. Lett. 110 164401
[36] Paris M G A, Plenio M B, Bose S, Jonathan D and D'Ariano 2000 Phys. Lett. A 273 153
[37] Wei L F,Wang S and He Q L 1997 Chin. Sci. Bull. 42 1724 (in Chinese)
[38] Hu L Y, Chen F,Wang Z S and Fan H Y 2011 Chin. Phys. B 20 074204
[39] Genoni M G, Paris M G A and Banaszek 2008 Phys. Rev. A 78 060303
[40] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[41] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[42] Kong D H, Li Z Y, Wang X Y and Li Y M 2014 Chin. Phys. Lett. 31 014208
[43] Lund A P, Jeong H, Ralph T C and Kim M S 2004 Phys. Rev. A 70 020101
[44] Wilson D, Son W, Kim M S, Ahn D and Brukner C 2002 J. Mod. Opt. 49 851
[45] Jeong H, Son W, Kim M S, Ahn D and Brukner C 2003 Phys. Rev. A 67 012106
[46] Stobinska M, Jeong H and Ralph T C 2007 Phys. Rev. A 75 052105
[47] Uhlmann A 1976 Theor. Math. Phys. 26 92
[48] Jozsa R 1994 J. Mod. Opt. 41 2315
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[3] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[4] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[5] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[6] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[7] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[8] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[9] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[10] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[11] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
No Suggested Reading articles found!