ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field |
Tang Xu-Bing (唐绪兵)a b, Gao Fang (高放)b, Wang Yao-Xiong (王耀雄)b, Kuang Sen (匡森)c, Shuang Feng (双丰)b c |
a School of Mathematics & Physics Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China; b Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; c Department of Automation, University of Science & Technology of China, Hefei 230027, China |
|
|
Abstract Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non- Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F≥0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively.
|
Received: 03 December 2014
Revised: 30 January 2015
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.–a
|
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035). |
Corresponding Authors:
Shuang Feng
E-mail: fshuang@iim.ac.cn
|
Cite this article:
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰) Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field 2015 Chin. Phys. B 24 034208
|
[1] |
Dell'Anno F, De Siena S and Illuminati F 2006 Phys. Rep. Rev. Sect. Phys. Lett. 428 53
|
[2] |
Kim M S, Son W, Buzek V and Knight P L 2002 Phys. Rev. A 65 032323
|
[3] |
Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
|
[4] |
Dodonov V V and de Souza L A 2005 J. Opt. B 7 s490
|
[5] |
Wu R B, Chakrabarti R and Rabitz H 2008 Phys. Rev. A 77 052303
|
[6] |
Adesso G, Dell'Anno F, De Siena S, Illuminati F and Souza L A M 2009 Phys. Rev. A 79 040305(R)
|
[7] |
Wu R B, Li T F, Kofman A G, Zhang J, Liu Y X, Pashkin A, Tsai J S and Franco N 2013 Phys. Rev. A 87 022324
|
[8] |
Cerf N J, Kruger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
|
[9] |
Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
|
[10] |
Marek P, Jeong H and Kim M S 2008 Phys. Rev. A 78 063811
|
[11] |
Zhang J, Liu Y X, Wu R B, Li C W and Tarn T J 2010 Phys. Rev. A 82 022101
|
[12] |
Zhang J, Wu R B, Liu Y X, Li C W and Tarn T J 2012 IEEE Trans. Automat. Control 57 1997
|
[13] |
Yanagisawa M 2009 Phys. Rev. Lett. 103 203601
|
[14] |
Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992 Phys. Rev. A 45 5193
|
[15] |
Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401
|
[16] |
Wei L F, Wang J S and Xi D P 1999 J. Opt. B 1 619
|
[17] |
Xu X X, Yuan H C and Wang Y 2014 Chin. Phys. B 23 070301
|
[18] |
Xu X F, Wang S and Tang B 2014 Chin. Phys. B 23 024206
|
[19] |
Resch K J, Lundeen J S and Steinberg A M 2002 Phys. Rev. Lett. 89 037904
|
[20] |
Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
|
[21] |
Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
|
[22] |
Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
|
[23] |
Meekhof D M, Monroe C, King B E, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 76 1796
|
[24] |
Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
|
[25] |
Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316
|
[26] |
Zavatta A, Fiurasek J and Bellini M 2011 Nat. Photon. 5 52
|
[27] |
Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2008 Phys. Rev. Lett. 101 233605
|
[28] |
Bartley T J, Donati G, Spring J B, Jin X M, Barbieri M, Datta A, Smith B J and Walmsley I A 2012 Phys. Rev. A 45 5193
|
[29] |
Yurke B 1986 Phys. Rev. Lett. 56 1515
|
[30] |
Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
|
[31] |
Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
|
[32] |
Zavatta A, Viciani S and Bellini M 2004 Science 306 660
|
[33] |
Zavatta A, Parigi V, Kim M S and Bellini M 2008 New J. Phys. 10 123006
|
[34] |
Zavatta A, Parigi V and Bellini M 2010 Nuovo Cimento Della Societa Italiana Di Fisica B-Basic Topics in Physics 125 547
|
[35] |
Rahimi-Keshari S, Kiesel T, Vogel W, Grandi s, Zavatta A and Bellini M 2013 Phys. Rev. Lett. 110 164401
|
[36] |
Paris M G A, Plenio M B, Bose S, Jonathan D and D'Ariano 2000 Phys. Lett. A 273 153
|
[37] |
Wei L F,Wang S and He Q L 1997 Chin. Sci. Bull. 42 1724 (in Chinese)
|
[38] |
Hu L Y, Chen F,Wang Z S and Fan H Y 2011 Chin. Phys. B 20 074204
|
[39] |
Genoni M G, Paris M G A and Banaszek 2008 Phys. Rev. A 78 060303
|
[40] |
Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
|
[41] |
Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
|
[42] |
Kong D H, Li Z Y, Wang X Y and Li Y M 2014 Chin. Phys. Lett. 31 014208
|
[43] |
Lund A P, Jeong H, Ralph T C and Kim M S 2004 Phys. Rev. A 70 020101
|
[44] |
Wilson D, Son W, Kim M S, Ahn D and Brukner C 2002 J. Mod. Opt. 49 851
|
[45] |
Jeong H, Son W, Kim M S, Ahn D and Brukner C 2003 Phys. Rev. A 67 012106
|
[46] |
Stobinska M, Jeong H and Ralph T C 2007 Phys. Rev. A 75 052105
|
[47] |
Uhlmann A 1976 Theor. Math. Phys. 26 92
|
[48] |
Jozsa R 1994 J. Mod. Opt. 41 2315
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|