Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088901    DOI: 10.1088/1674-1056/26/8/088901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The robustness of sparse network under limited attack capacity

Xiao-Juan Wang(王小娟)1, Mei Song(宋梅)1, Lei Jin(金磊)1, Zhen Wang(王珍)2
1 Electronic Engineering Institute, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Electronic Engineering Institute of PLA, Hefei 230000, China
Abstract  

The paper studies the robustness of the network in terms of the network structure. We define a strongly dominated relation between nodes and then we use the relation to merge the network. Based on that, we design a dominated clustering algorithm aiming at finding the critical nodes in the network. Furthermore, this merging process is lossless which means the original structure of the network is kept. In order to realize the visulization of the network, we also apply the lossy consolidation to the network based on detection of the community structures. Simulation results show that compared with six existed centrality algorithms, our algorithm performs better when the attack capacity is limited. The simulations also illustrate our algorithm does better in assortative scale-free networks.

Keywords:  robustness      dominated relation      merge      lossless  
Received:  13 January 2017      Revised:  21 April 2017      Accepted manuscript online: 
PACS:  89.75.Ck  
  89.75.Fb (Structures and organization in complex systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61471055).

Corresponding Authors:  Mei Song     E-mail:  songmbupt@126.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍) The robustness of sparse network under limited attack capacity 2017 Chin. Phys. B 26 088901

[1] Cai Q and Liu J 2016 Sci. Rep. 6 35904
[2] Baldassano S N and Bassett D S 2016 Sci. Rep. 6 26087
[3] Zhang Y, Zhou S, Guan J, et al. 2011 Phys. Rev. E 87 1079
[4] A.L Barabasi, H Jeong, Z Nda, et al. 2015 Veterinary Surgery 6 66
[5] Gao J, Liu Y Y, D'Souza R M, et al. 2014 Nat. Commu. 5 5415
[6] Ito S and Sagawa T 2013 Phys. Rev. Lett. 111 81
[7] Mitrović M and Tadić B 2009 Phys. Rev. E 80 026123
[8] Karrer B, Newman M E and Zdeborová L 2014 Phys. Rev. Lett. 113 208702
[9] Decelle A, Krzakala F, Moore C, et al. 2011 Phys. Rev. Lett. 107 065701
[10] Luccioli S, Olmi S, Politi A, et al. 2012 Phys. Rev. Lett. 109 138103
[11] Kitsak M, Gallos L K, Havlin S, et al. 2010 Nat. Phys. 6 888
[12] Dorogovtsev S N, Goltsev A V and Mendes J F 2006 Phys. Rev. Lett. 96 185
[13] Elbirt B 2007 "The nature of networks: A structural census of degree centrality across multiple network sizes and edge densities", Ph. D. Dissertation (Buffalo: State University of New York)
[14] Freeman L C 1977 Sociometry 40 35
[15] Freeman L C 1978 Social Networks 1 215
[16] Batagelj V and Zaversnik M 2003 Comput. Sci. 1 34
[17] Latora V and Marchiori M 2005 Phys. Rev. E 71 015103
[18] Karrer B, Newman M E and Zdeborov L 2014 Phys. Rev. Lett. 113 208702
[19] Agliari E, Cioli C and Guadagnini E 2011 Phys. Rev. E 84 247
[20] Azimitafreshi N, Gmezgardes J and Dorogovtsev S N 2014 Phys. Rev. E 90 032816
[21] Liu J G, Lin J H, Guo Q, et al. 2015 Sci. Rep. 6 032812
[22] Tian L and Shi D N 2012 Phys. Lett. A 376 286
[23] Kanevsky A 1993 Networks 23 533
[24] Rosvall M and Bergstrom C T 2007 Proceedings of the National Academy of Sciences USA 1118
[25] Wang F, Li T, Wang X, et al. 2011 Data Mining and Knowledge Discovery 22 493
[26] Singh A and Humphries M D 2015 Sci. Rep. 5 8828
[27] Liu W, Pellegrini M and Wang X 2014 Sci. Rep. 4 5739
[28] Brandes U 2008 Social Networks 30 136
[29] Bonacich P 1987 American Journal of Sociology 92 1170
[30] Langville A N and Meyer C D 2005 Siam Review 47 135
[31] Bu D, Zhao Y, Cai L, et al. 2003 Nucleic Acids Research 31 2443
[32] http://vlado.fmf.uni-lj.si/pub/networks/data/http://vlado.fmf.uni-lj.si/pub/networks/data/
[33] Watts D J and Strogatz S H 1998 Nature 393 440
[34] Adamic L, Glance N, Adamic L, et al. 2005 IL Nuovo Cimento A 62 127
[35] Roget P M and Dutch R A 1982 Roget's Thesaurus of English Words and Phrases (Longman) p. 90
[36] Knuth D E 1993 The Stanford Graph Base: a platform for combinatorial computing (Reading: Addison-Wesley) pp. 41-43
[37] Newman M E 2002 Phys. Rev. Lett. 89 111
[38] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 56109
[39] Kempe D, Kleinberg J and Tardos E 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , August 24-27, 2003, Washington, DC, USA, pp. 137-146
[1] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[4] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[5] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[6] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[7] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[10] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
[11] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[12] Pre-warning information dissemination models of different media under emergencies
Anying Chen(陈安滢), Haoran Zhu(朱昊然), Xiaoyong Ni(倪晓勇), Guofeng Su(苏国锋). Chin. Phys. B, 2020, 29(9): 094302.
[13] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[14] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[15] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
No Suggested Reading articles found!