Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024203    DOI: 10.1088/1674-1056/ac0dac
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler

Shao-Yang Li(李绍洋)1,3, Liang-Liang Wang(王亮亮)1,†, Dan Wu(吴丹)1,3, Jin You(游金)1,3, Yue Wang(王玥)1, Jia-Shun Zhang(张家顺)1, Xiao-Jie Yin(尹小杰)1, Jun-Ming An(安俊明)1,2,3, and Yuan-Da Wu(吴远大)1,2,3
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Since the advent of three-dimensional photonic integrated circuits, the realization of efficient and compact optical interconnection between layers has become an important development direction. A vertical interlayer coupler between two silicon layers is presented in this paper. The coupling principle of the directional coupler is analyzed, and the traditional method of using a pair of vertically overlapping inverse taper structures is improved. For the coupling of two rectangular waveguide layers, a pair of nonlinear tapers with offset along the transmission direction is demonstrated. For the coupling of two ridge waveguide layers, a nonlinear taper in each layer is used to achieve high coupling efficiency. The simulation results show that the coupling efficiency of the two structures can reach more than 90% in a wavelength range from 1500 nm to 1650 nm. Moreover, the crosstalk is reduced to less than -50 dB by using multimode waveguides at intersections. The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.
Keywords:  silicon photonics      vertical coupling      nonlinear tapers      three-dimensional integration  
Received:  21 May 2021      Revised:  18 June 2021      Accepted manuscript online:  23 June 2021
PACS:  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203001), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43000000), and the National Natural Science Foundation of China (Grant No. 61805232).
Corresponding Authors:  Liang-Liang Wang     E-mail:  wangliangl09@semi.ac.cn

Cite this article: 

Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大) High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler 2022 Chin. Phys. B 31 024203

[1] Zhou Z P, Tu Z J, Yin B, Tan W, Yu L, Yi H X and Wang X J 2013 Chin. Opt. Lett. 11 012501
[2] Chen X F 2019 J. Semicond. 40 050301
[3] Itoh K, Kuno Y, Hayashi Y, Suzuki J, Hojo N, Amemiya T, Nishiyama N and Arai S 2016 IEEE J. Sel. Top. Quantum Electron. 22 255
[4] Yuan P, Wang Y, Wu Y D, An J M and Hu X W 2018 Chin. Phys. B 27 124208
[5] Yuan P, Wu Y, Wang Y, An J and Hu X 2015 J. Semicond. 36 084005
[6] Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D and Yu J Z 2013 Chin. Phys. B 22 114212
[7] Wu D Y, Hu X, Li W Z, Chen D G, Wang L and Xiao X 2021 J. Semicond. 42 020502
[8] Suzuki K, Namiki S, Kawashima H, Ikeda K, Konoike R, Yokoyama N, Seki M, Ohtsuka M, Saitoh S, Suda S, Matsuura H and Yamada K 2020 Journal of Lightwave Technology 38 226
[9] JoonHyun K, Atsumi Y, Hayashi Y, Suzuki J, Kuno Y, Amemiya T, Nishiyama N and Arai S 2014 IEEE J. Sel. Top. Quantum Electron. 20 317
[10] Kang J, Atsumi Y, Oda M, Amemiya T, Nishiyama N and Arai S 2012 Jpn. J. Appl. Phys. 51 120203
[11] Sodagar M, Pourabolghasem R, Eftekhar A A and Adibi A 2014 Opt. Express 22 16767
[12] Sun R, Beals M, Pomerene A, Cheng J, Hong C Y, Kimerling L and Michel J 2008 Opt. Express 16 11682
[13] Huang Y, Song J, Luo X, Liow T Y and Lo G Q 2014 Opt. Express 22 21859
[14] Li L, Lin H T, Qiao S T, Zou Y, Danto S, Richardson K, Musgraves J D, Lu N S and Hu J J 2014 Nat. Photon. 8 643
[15] Sacher W D, Mikkelsen J C, Huang Y, Mak J C C, Yong Z, Luo X S, Li Y, Dumais P, Jiang J, Goodwill D, Bernier E, Lo P G Q and Poon J K S 2018 Proceed. IEEE 106 2232
[16] Singaravelu P K J, Devarapu G C R, Schulz S A, Wilmart Q, Malhouitre S, Olivier S and O'Faolain L 2019 J. Phys. D:Appl. Phys. 52 214001
[17] Maegami Y, Okano M, Cong G, Ohno M and Yamada K 2016 Opt. Express 24 16856
[18] Huang W P 1994 J. Opt. Soc. Am. A 11 963
[19] Marcatili E A J 1969 The Bell System Technical Journal 48 2071
[1] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[2] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[3] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[4] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[5] Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, Yu Yu-De. Chin. Phys. B, 2015, 24(10): 106801.
[6] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(7): 073201.
[7] High-efficiency focusing grating coupler with optimized ultra-short taper
Yang Biao (杨彪), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2014, 23(11): 114206.
[8] A novel highly efficient grating coupler with large filling factor used for optoelectronic integration
Zhou Liang(周亮), Li Zhi-Yong(李智勇), and Zhu Yu(朱宇), Li Yun-Tao(李运涛), Fan Zhong-Cao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中). Chin. Phys. B, 2010, 19(12): 124214.
No Suggested Reading articles found!