Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020301    DOI: 10.1088/1674-1056/ac140b
GENERAL Prev   Next  

Time evolution law of a two-mode squeezed light field passing through twin diffusion channels

Hai-Jun Yu(余海军)1,2,† and Hong-Yi Fan(范洪义)1
1 School of Materials and Engineering, University of Science and Technology of China, Hefei 230026, China;
2 School of Electronic Engineering, Huainan Normal University, Huainan 232038, China
Abstract  We explore the time evolution law of a two-mode squeezed light field (pure state) passing through twin diffusion channels, and we find that the final state is a squeezed chaotic light field (mixed state) with entanglement, which shows that even though the two channels are independent of each other, since the two modes of the initial state are entangled with each other, the final state remains entangled. Nevertheless, although the squeezing (entanglement) between the two modes is weakened after the diffusion, it is not completely removed. We also highlight the law of photon number evolution. In the calculation process used in this paper, we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.
Keywords:  two-mode squeezed light field      twin diffusion channels      time evolution law      entanglement  
Received:  11 March 2021      Revised:  07 July 2021      Accepted manuscript online:  14 July 2021
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775208), the Foundation for Young Talents in College of Anhui Province, China (Grant No. gxyq2019077), and the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant Nos. KJ2019A0688 and KJ2020A0638).
Corresponding Authors:  Hai-Jun Yu     E-mail:  haijun20030@163.com

Cite this article: 

Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义) Time evolution law of a two-mode squeezed light field passing through twin diffusion channels 2022 Chin. Phys. B 31 020301

[1] Saleh B E A and Teich M C 1987 Phys. Rev. Lett. 58 2656
[2] Chen J H and Fan H Y 2009 Chin. Phys. B 18 3714
[3] Yuan H C, Li H M and Xu X F 2013 Chin. Phys. B 22 060301
[4] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
[5] Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
[6] Weiss G H and Maradudin A A 1962 J. Math. Phys. 3 771
[7] Aronson R and Corngold N 1999 J. Opt. Soc. Am. A 16 1066
[8] Fan H Y, Wang S and Hu L Y 2014 Front. Phys. 9 74
[9] Meng X G, Wang J S, Zhang X Y, Yang Z S, Liang B L and Zhang Z T 2020 Ann. Phys. 532 2000219
[10] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L 2020 Ann. Phys. 532 1900585
[11] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L 2020 Front. Phys. 15 52501
[12] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[13] Song J, Xu Y J and Fan H Y 2011 Acta Phys. Sin. 60 084208 (in Chinese)
[14] Yu H J, Du J M and Zhang X L 2012 Acta Phys. Sin. 61 164205 (in Chinese)
[15] Fan H Y 2004 Int. J. Mod. Phys. B 18 1387
[16] Newman M, So W and Thompson R C 1989 Linear Multilinear A 24 301
[17] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I and Polzik E S 2011 Phys. Rev. Lett. 107 080503
[18] Li G X, Tan H T, Wu S P and Huang G M 2006 Phys. Rev. A 74 025801
[19] Kumar R and Prakash H 2010 Can. J. Phys. 88 181
[20] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[21] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[22] Zhu W, Huang Y and Kouri D J 1994 Chem. Phys. Lett. 217 73
[23] Fan H Y 1989 Commun. Theor. Phys. 12 219
[24] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[25] Wang S, Jiang J J and Li H Q 2009 Chin. Phys. Lett. 26 060304
[26] Spiridonov V 1995 Phys. Rev. A 52 1909
[27] Sun S X 2006 Phys. Rev. Lett. 96 210602
[28] Zhang H L, Yuan H C, Hu L Y and Xu X X 2015 Opt. Commun. 356 223
[29] Gong L H, Zhou N R, Hu L Y and Fan H Y 2012 Chin. Phys. B 21 080302
[30] Fan H Y and Lu H L 2007 Opt. Lett. 32 554
[31] Fan H Y and Liu S G 2007 Opt. Lett. 32 1507
[32] Fan H Y and Lou S Y 2015 Theory of Operator Hermite Polynomials in Quantum Mechanics (Hefei:University of Science and Technology of China Press) pp. 120-122 (in Chinese)
[33] Xie C M, Fan H Y and Wan S L 2010 Chin. Phys. B 19 064207
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!