CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices |
Fu-Jian Ge(葛付建)1, Hui Peng(彭辉)1, Ye Tian(田野)1, Xiao-Yue Fan(范晓跃)1, Shuai Zhang(张帅)2,3, Xian-Xin Wu(吴宪欣)2,3, Xin-Feng Liu(刘新风)2,3,†, and Bing-Suo Zou(邹炳锁)4,‡ |
1 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; 3 University of Chinese Academy of Sciences(CAS), Beijing 100049, China; 4 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China |
|
|
Abstract Emissions by magnetic polarons and spin-coupled d-d transitions in diluted magnetic semiconductors (DMSs) have become a popular research field due to their unusual optical behaviors. In this work, high-quality NiI2(II)-doped CdS nanobelts are synthesized via chemical vapor deposition (CVD), and then characterized by scanning electron microscopy (SEM), x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and Raman scattering. At low temperatures, the photoluminescence (PL) spectra of the Ni-doped nanobelts demonstrate three peaks near the band edge: the free exciton (FX) peak, the exciton magnetic polaron (EMP) peak out of ferromagnetically coupled spins coupled with FXs, and a small higher-energy peak from the interaction of antiferromagnetic coupled Ni pairs and FXs, called antiferromagnetic magnetic polarons (AMPs). With a higher Ni doping concentration, in addition to the d-d transitions of single Ni ions at 620 nm and 760 nm, two other PL peaks appear at 530 nm and 685 nm, attributed to another EMP emission and the d-d transitions of the antiferromagnetic coupled Ni2+-Ni2+ pair, respectively. Furthermore, single-mode lasing at the first EMP is excited by a femtosecond laser pulse, proving a coherent bosonic lasing of the EMP condensate out of complicated states. These results show that the coupled spins play an important role in forming magnetic polaron and implementing related optical responses.
|
Received: 30 March 2021
Revised: 18 May 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
71.35.Ji
|
(Excitons in magnetic fields; magnetoexcitons)
|
|
Fund: Project supported by the National Key Basic Research Project of China (Grant No. 2014CB920903), the Guangxi NSF Key Fund, China (Grant No. 2020GXNSFDA238004), the Fund from the Ministry of Science and Technology, China (Grant No. 2017YFA0205004), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000), the National Natural Science Foundation of China (Grant Nos. 11874130, 22073022, 20173025, and 12074086), the DNL Cooperation Fund of the Chinese Academy of Sciences (Grant No. DNL202016), and the CAS Instrument Development Project (Grant No. Y950291). |
Corresponding Authors:
Xin-Feng Liu, Bing-Suo Zou
E-mail: liuxf@nanoctr.cn;zoubs@bit.edu.cn
|
Cite this article:
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁) Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices 2022 Chin. Phys. B 31 017802
|
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [2] Liu R, Shi L and Zou B 2014 ACS Appl. Mater. Interfaces 6 10353 [3] Zou B S, Hou L P, Tian Y, Han J B, Peng H, Yang X T and Shi L J 2021 New J. Phys. 23 033019 [4] Farooq M I, Khan M S, Yousaf M, Zhang K and Zou B 2020 ACS Appl. Electron. Mater. 2 1679 [5] Bhattacharjee A K and laGuillaume C B A 1997 Phys. Rev. B 55 10613 [6] Gao Q Q, Dai Y Q, Han B Q, Zhu W L, Li X C and Li C B 2019 Appl. Surf. Sci. 490 178 [7] Kuindersma S R, Sanchez J P and Haas C 1981 Physica B & C 111 231 [8] Li Y, Ji P F, Hao Y J, Song Y L, Zhou F Q and Yuan S Q 2021 Chin. Phys. B 30 016104 [9] Zhang K, Zhao D, Wang J, Zhang L, Zou M, Guo Y C, Wang S F and Zou B S 2020 ACS Appl. Nano Mater. 3 5019 [10] Xu J Y, Zhuang X J, Guo P F, Zhang Q L, Ma L, Wang X X, Zhu X L and Pan A L 2013 J. Mater. Chem. C 1 4391 [11] Yilmaz S, McGlynn E, Bacaksiz E, Cullen J and Chellappan R K 2012 Chem. Phys. Lett. 525-526 72 [12] Yilmaz S, McGlynn E, Bacaksiz E, Cullen J and Chellappan R K 2012 Chem. Phys. Lett. 525-26 72 [13] Ahmed B, Ojha A K and Kumar S 2017 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 179 144 [14] Roussos G and Schulz H J 1980 Phys. Status Solidi B-Basic Res. 100 577 [15] Zou M, Wang J, Khan M S, Mahmood A, Zhang L, Guo Y C, Zhang K, Wang S F and Zou B S 2020 Nanotechnology 31 325002 [16] Zou S Y, Kamran M A, Shi L J, Liu R B, Guo S, Kavokin A and Zou B S 2016 ACS Photon. 3 1809 [17] Suo Z Q, Dai J F, Gao S S and Gao H R 2020 Chin. Phys. B 29 117502 [18] Xu L, Su Y, Cai D, Chen Y Q and Feng Y 2006 Mater. Lett. 60 1420 [19] Kamran M A 2018 Nanotechnology 29 265602 [20] Panigrahy B, Aslam M, Misra D S, Ghosh M and Bahadur D 2010 Adv. Funct. Mater. 20 1161 [21] Li S, Zhang L, Jiang T, Chen L, Lin Y, Wang D and Xie T 2014 Chem. - Eur. J 20 311 [22] Toyozawa Y 1961 Prog. Theor. Phys. 26 29 [23] Wu B, Ning W H, Xu Q, Manjappa M, Feng M J, Ye S Y, Fu J H, Lie S, Yin T T, Wang F, Goh T W, Harikesh P C, Tay Y K E, Shen Z X, Huang F Q, Singh R J, Zhou G F, Gao F and Sum T C 2021 Sci. Adv. 7 eabd3160 [24] Zhang Y C, Chen W W and Hu X Y 2007 Cryst. Growth Des. 7 580 [25] Saravanan L, Jayavel R, Pandurangan A, Jih-Hsin L and Hsin-Yuan M 2014 Powder Technol. 266 407 [26] Miller and A. C 1992 Surf. Sci. Spectra 1 312 [27] Mansour A.N. 1994 Surf. Sci. Spectra 3 231 [28] Khallaf H, Chai G, Lupan O, Chow L, Park S and Schulte A 2009 Appl. Surf. Sci. 255 4129 [29] Deka K and Kalita M P C 2018 J. Alloys Compd. 757 209 [30] Geng P J, Li W G, Zhang X H, Zhang X Y, Deng Y and Kou H B 2017 J. Phys. D: Appl. Phys. 50 40LT02 [31] Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418 [32] Tao S, Miyata Y, Yanagi K, Kataura H and Okamoto H 2009 Phys. Rev. B 80 201405 [33] Kamran M A, Zou B S, Zhang K, Yang X T, Ge F J, Shi L J and Alharbi T 2019 Research (Washington, D.C.) 2019 UNSP 6956937 [34] Wang F, Zhou B, Sun H M, Cui A Y, Jiang T, Xu L P, Jiang K, Shang L Y, Hu Z G and Chu J H 2018 Phys. Rev. B 98 245403 [35] Kozielsk.M, Spinolo G and Pollini I 1972 J. Phys. C: Solid State Phys. 5 1253 [36] Xue S Q, Zhang F C, Zhang S L, Wang X Y and Shao T T 2018 Nanomaterials 8 10 [37] Monthoux P, Pines D and Lonzarich G G 2007 Nature 450 1177 [38] Binet F, Duboz J Y, Off J and Scholz F 1999 Phys. Rev. B 60 4715 [39] Imada A, Ozaki S and Adachi S 2002 J. Appl. Phys. 92 1793 [40] Li Z P, Wang T M, Jin C H, Lu Z G, Lian Z, Meng Y Z, Blei M, Gao S Y, Taniguchi T, Watanabe K, Ren T H, Tongay S, Yang L, Smirnov D, Cao T and Shi S F 2019 Nat. Commun. 10 1 [41] Akimov I A, Godde T, Kavokin K V, Yakovlev D R, Reshina, II, Sedova I V, Sorokin S V, Ivanov S V, Kusrayev Y G and Bayer M 2017 Phys. Rev. B 95 8 [42] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y and Goto T 1998 Appl. Phys. Lett. 73 1038 [43] Tian X Y, Xu Y L, Zhao H M, Qin X B, Nie Y T, Li W, Liu S, Lin Q Q and Cao Q 2020 J. Mater. Chem. C 8 7314 [44] Zhao W Y, Ku Z L, Lv L P, Lin X, Peng Y, Jin Z M, Ma G H and Yao J Q 2019 Chin. Phys. Lett. 36 028401 [45] Ren J H, Liao Q, Huang H, Li Y, Gao T G, Ma X K, Schumacher S, Yao J N, Bai S M and Fu H B 2020 Nano Lett. 20 7550 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|