Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014703    DOI: 10.1088/1674-1056/ac339b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS

Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨)
National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution. This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution, to provide a real-time and reliable measurement of velocity distribution in detonation exhaust flow with obvious nonuniformity. Relations are established between overlapped spectrums along probing beams and Gauss velocity distribution phantom according to the frequency shifts and tiny variations in components of light-of-sight absorbance profiles at low frequencies analyzed by the fast Fourier transform. With simulated optical measurement using H2O feature at 7185.6 cm-1 carried out on a phantom generated using a simulation of two-phase detonation by a two-fluid model, this method demonstrates a satisfying performance on recovery of velocity distribution profiles in supersonic flow even with a noise equivalent absorbance up to 2×10-3. This method is applied to the analysis of rapidly decreasing velocity during a complete working cycle in the external flow field of an air-gasoline detonation tube operating at 25 Hz, and results show the velocity in the core flow field would be much larger than the arithmetic average from traditional tunable diode laser doppler velocimetry. This proposed velocity distribution sensor would reconstruct nonuniform velocity distribution of high-speed flow in low cost and simple operations, which broadens the possibility for applications in research on the formation and propagation of external flow filed of detonation tube.
Keywords:  velocity distribution      tunable diode laser absorption spectroscopy      nonuniform flow      Doppler effect  
Received:  15 July 2021      Revised:  02 October 2021      Accepted manuscript online:  27 October 2021
PACS:  47.40.Rs (Detonation waves)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: Project supported by the China Scholarship Council (Grant No. 201906845059), the Young Scientists Found of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190439), and the Fundamental Research Funds of National Key Laboratory of Transient Physics (Grant No. 6142604200202).
Corresponding Authors:  Ning Li     E-mail:  phoenixkyo@163.com

Cite this article: 

Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨) In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS 2022 Chin. Phys. B 31 014703

[1] Raffel M, Willert C, Wereley S and Kompenhans J 2007 Particle Image Velocimetry, 2nd edn. (New York: Springer-Verlag Berlin Heidelberg New York) p. 123
[2] Alpers A, Gritzmann P, Moseev D and Salewski M 2015 Comput. Phys. Commun. 187 130
[3] Wood M P and Ozanyan K B 2015 IEEE Sens J. 15 545
[4] Strand C L and Hanson R K 2015 AIAA J. 53 2978
[5] Goldenstein C S, Schultz I A, Spearrin R M, Jeffries J B and Hanson R K 2014 Appl. Phys. B 116 717
[6] Li F, Yu X, Cai W and Ma L 2012 Appl. Opt. 51 4788
[7] Xu L, Liu C, Jing W, Cao Z, Xue X and Lin Y 2016 Rev. Sci. Instrum. 87 013101
[8] Cai W and Kaminski C F 2014 Appl. Phys. Lett. 104 034101
[9] Foo J and Martin P A 2017 Appl. Phys. B 123 160
[10] Cai W and Kaminski C F 2017 Prog. Energ. Combust. 59 1
[11] Grauer S J and Steinberg A M 2020 Opt. Express 28 32676
[12] Gamba M 2015 53rd AIAA Aerospace Sciences Meeting, January 5-9, 2015, Florida, USA, p. 1222
[13] Qu Q, Gao S, Chang L and Xu L 2019 Appl. Phys. B 125 129
[14] Qu Q, Cao Z, Xu L, Liu C, Chang L and McCann H 2019 Appl. Opt. 58 205
[15] Chang S C 1995 J. Comput. Phys. 119 295
[16] Chang S C, Wang X Y and Chow C Y 1999 J. Comput. Phys. 156 89
[17] Jonassen D R, Settles G S and Tronosky M D 2006 Opt. Laser Eng. 44 190
[18] Hanson R K, Spearrin R M and Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p. 227
[19] Xu L, Liu C, Zheng D, Cao Z and Cai W 2014 Rev. Sci. Instrum. 85 123108
[20] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B and Hanson R K 2014 Appl. Opt. 53 356
[21] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F and Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3
[22] Sanders S T, Wang J, Jeffries J B and Hanson R K 2001 Appl. Opt. 40 4404
[23] Kang Y, Li N, Weng C S and Wang C W 2018 Chin. Phys. B 27 104703
[24] Lv X J, Li N and Weng C S 2014 Spectrosc. Spect. Anal. 34 582 (in Chinese)
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[3] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[4] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[5] Rolling velocity and relative motion of particle detector in local granular flow
Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖). Chin. Phys. B, 2022, 31(11): 114501.
[6] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[7] Influence of an inserted bar on the flow regimes in the hopper
Yi Peng(彭毅), Sheng Zhang(张晟), Mengke Wang(王梦柯), Guanghui Yang(杨光辉), Jiangfeng Wan(万江锋), Liangwen Chen(陈良文), and Lei Yang(杨磊). Chin. Phys. B, 2021, 30(2): 028101.
[8] Avalanching patterns of irregular sand particles in continual discrete flow
Ren Han(韩韧), Yu-Feng Zhang(张宇峰), Ran Li(李然), Quan Chen(陈泉), Jing-Yu Feng(冯靖禹), Ping Kong(孔平). Chin. Phys. B, 2020, 29(2): 024501.
[9] High-precision three-dimensional atom localization via probe absorption at room temperature
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Dingyu Cai(蔡定宇), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2020, 29(12): 124205.
[10] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[11] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[12] Collective transport of Lennard–Jones particles through one-dimensional periodic potentials
Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣). Chin. Phys. B, 2017, 26(7): 070502.
[13] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[14] Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces
Hu Hai-Bao (胡海豹), Chen Li-Bin (陈立斌), Bao Lu-Yao (鲍路瑶), Huang Su-He (黄苏和). Chin. Phys. B, 2014, 23(7): 074702.
[15] Dynamic thermal modeling and parameter identification for monolithic laser diode module
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣). Chin. Phys. B, 2013, 22(3): 034203.
No Suggested Reading articles found!