Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028101    DOI: 10.1088/1674-1056/abcf40

Influence of an inserted bar on the flow regimes in the hopper

Yi Peng(彭毅)1,2, Sheng Zhang(张晟)1, Mengke Wang(王梦柯)1,, Guanghui Yang(杨光辉)1, Jiangfeng Wan(万江锋)3, Liangwen Chen(陈良文)1, and Lei Yang(杨磊)1
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 East China University of Technology, Nanchang 330000, China
Abstract  We investigated the influence of an inserted bar on the hopper flow experimentally. Three geometrical parameters, size of upper outlet D1, size of lower outlet D0, and the height of bar H, are variables here. With varying H we found three regimes: one transition from clogging to a surface flow and another transition from a surface flow to a dense flow. For the dense flow, the flow rate follows Beverloo's law and there is a saturation of inclination of free surface θ . We plotted the velocity field and there is a uniform linear relation between the particle velocity and depth from the free surface. We also found that the required value of D1 to guarantee the connectivity of flow is little smaller than D0. For the transition from a surface flow to a dense flow, there is a jump of flow rate and the minimum θ for flowing is two degrees larger than the repose angle.
Keywords:  hopper flow      inserted bar      flow type transition      free surface      velocity distribution  
Received:  25 August 2020      Revised:  23 October 2020      Accepted manuscript online:  01 December 2020
PACS:  81.05.Rm (Porous materials; granular materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705256 and 11905272), National Postdoctoral Program for Innovative Talents, China (Grant No. BX201700258), and West Light Foundation of the Chinese Academy of Sciences (Grant No. 2018-98).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Yi Peng(彭毅), Sheng Zhang(张晟), Mengke Wang(王梦柯), Guanghui Yang(杨光辉), Jiangfeng Wan(万江锋), Liangwen Chen(陈良文), and Lei Yang(杨磊) Influence of an inserted bar on the flow regimes in the hopper 2021 Chin. Phys. B 30 028101

1 Beverloo W A, H A Leniger and van de Velde J 1961 Chemical Engineering Science 15 260
2 Brown R L 1961 Nature 191 458
3 Nedderman R, Tuzun U, Savage S and Houlsby G 1982 Chemical Engineering Science 37 1597
4 Hirshfeld D, Radzyner Y and Rapaport D C 1997 Phys. Rev. E 56 4404
5 Mankoc C, Janda A, Arévalo R, Pastor J, Zuriguel M, Garcimart\'in I and Maza D 2008 Granular Matter 10 469
6 Hilton J E and Cleary P W 2011 Phys. Rev. E 84 011307
7 Janda A, Zuriguel I and Maza D 2012 Phys. Rev. Lett. 108 248001
8 Saleh K, Golshan S and Zarghami R 2018 Chemical Engineering Science 192 1011
9 Bertho Y, Giorgiutti-Dauphine F and Hulin J P 2003 Phys. Rev. Lett. 90 144301
10 Anand A, Curtis J S, Wassgren C R, Hancock B C and Ketterhagen W R 2008 Chemical Engineering Science 63 5821
11 Zhang S, Lin P, Wang C L, Tian Y, Wan J F and Yang L 2014 Granular Matter 16 857
12 Vidyapati V and Subramaniam S2013 Industrial & Engineering Chemistry Research 52 13171
13 Rubio-Largo S M, Janda A, Maza D, Zuriguel I and Hidalgo R C 2015 Phys. Rev. Lett. 114 238002
14 Lin P, Zhang S, Qi J, Xing Y M and Yang L 2015 Physica A 417 29
15 Tuzun U and R M Nedderman1982 Powder Technology 31 27
16 Babout L, Grudzien K, Maire E and Withers P J 2013 Chemical Engineering Science 97 210
17 Johanson J R 1968 Powder Technology 1 328
18 Tuzun U and Nedderman R M 1985 Chemical Engineering Science 40 325
19 Yang S C and Hsiau S S 2001 Powder Technology 120 244
20 Johanson K 2006 Powder Technology 170 109
21 Endo K, Reddy K A and Katsuragi H 2017 Phys. Rev. Fluids 2 094302
22 Zuriguel I, Janda A, Garcimartin A, Lozano C, Arevalo R and Maza D 2011 Phys. Rev. Lett. 107 278001
23 Li X D, Wang J F, Zhang S, Lin P and Yang L2017 PloS One 12 e0187435
24 Wojcik M, Tejchman J and Enstad G G 2012 Powder Technology 222 15
25 Delannay R, Louge M, Richard P, Taberlet N and Valance A 2007 Nat. Mater. 6 99
26 Taberlet N, Richard P, Valance A, Losert W, Pasini José Miguel, Jenkins J T and Delannay R2003 Phys. Rev. Lett. 91 264
27 Bi W, Delannay R, Richard P, Taberlet N and Valance A2005 J. Phys.: Condens. Matter 17 S2457
28 Mart\'inez E, Gonz\'alez-Lezcano A, Batista-Leyva A J and Altshuler E 2016 Phys. Rev. E 93 062906
29 Yang L and Zhan W L 2015 Science China-Technological Sciences 58 1705
30 Kristan M, Ales Leonardis, Matas J, Felsberg M and Pflugfelder R2018 IEEE International Conference on Computer Vision Workshops
31 Yang G H, Zhang S, Lin P, Tian Y, Wan J and Yang L 2016 Granular Matter 18 1
32 Wan J F, Zhang S, Tian Y and Lin P 2016 Journal of Nuclear Science and Technology 53 1809
33 Brown R L and Richards J C 1965 Rheologica Acta 4 153
34 Zhang S, Yang G, Lin P, Chen L and Yang L 2019 Euro. Phys. J. E 42 14
35 Orpe A V and Khakhar D V 2007 Journal of Fluid Mechanics 571 1
36 Jop P, Forterre Y and Pouliquen O 2005 Journal of Fluid Mechanics 541 167
37 Pouliquen O and Renaut N 1996 Journal De Physique Ii 6 923
38 Marteau E and Andrade J E 2018 Acta Geotechnica 13 549
39 Nagel S 1992 Rev. Mod. Phys. 64 321
40 Zheng P2011 Acta Phys. Sin. 60 680 (in Chinese)
41 Taberlet N, Richard P, Henry E and Delannay R 2004 Europhys. Lett. 68 515
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] Rolling velocity and relative motion of particle detector in local granular flow
Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖). Chin. Phys. B, 2022, 31(11): 114501.
[3] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[4] Avalanching patterns of irregular sand particles in continual discrete flow
Ren Han(韩韧), Yu-Feng Zhang(张宇峰), Ran Li(李然), Quan Chen(陈泉), Jing-Yu Feng(冯靖禹), Ping Kong(孔平). Chin. Phys. B, 2020, 29(2): 024501.
[5] Collective transport of Lennard–Jones particles through one-dimensional periodic potentials
Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣). Chin. Phys. B, 2017, 26(7): 070502.
[6] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[7] Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces
Hu Hai-Bao (胡海豹), Chen Li-Bin (陈立斌), Bao Lu-Yao (鲍路瑶), Huang Su-He (黄苏和). Chin. Phys. B, 2014, 23(7): 074702.
[8] Three-dimensional numerical simulation of crown spike due to coupling effect between bubbles and free surface
Han Rui (韩蕊), Zhang A-Man (张阿漫), Li Shuai (李帅). Chin. Phys. B, 2014, 23(3): 034703.
[9] Modelling of spall damage in ductile materials and its application to the simulation of plate impact on copper
Zhang Feng-Guo (张凤国), Zhou Hong-Qiang (周洪强), Hu Jun (胡军), Shao Jian-Li (邵建立), Zhang Guang-Ca (张广财), Hong Tao (洪滔), He Bin (何斌). Chin. Phys. B, 2012, 21(9): 094601.
[10] Effect of number density on velocity distributions in a driven quasi-two-dimensional granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), and Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2010, 19(10): 108203.
[11] The interaction between multiple bubbles and the free surface
Zhang A-Man(张阿漫) and Yao Xiong-Liang(姚熊亮) . Chin. Phys. B, 2008, 17(3): 927-938.
[12] Interaction of a submerged horseshoe vortex with a free surface
Wu Yun-Gang (吴云岗), Tao Ming-De (陶明德). Chin. Phys. B, 2006, 15(6): 1137-1142.
No Suggested Reading articles found!