Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 070502    DOI: 10.1088/1674-1056/26/7/070502
RAPID COMMUNICATION Prev   Next  

Collective transport of Lennard–Jones particles through one-dimensional periodic potentials

Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣)
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  

The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick's law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials–-the potential well and barrier–-which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems.

Keywords:  transport      external potential      collective diffusion      Maxwell velocity distribution  
Received:  13 January 2017      Revised:  30 March 2017      Accepted manuscript online: 
PACS:  05.60.Cd (Classical transport)  
  47.60.Dx (Flows in ducts and channels)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  47.63.-b (Biological fluid dynamics)  
Fund: 

Project supported by the Natural Science Foundation of Guangdong Province,China (Grant No.2014A030313367) and the Fundamental Research Fund for the Central Universities,China (Grant No.11614341).

Corresponding Authors:  Wei-rong Zhong     E-mail:  wrzhong@hotmail.com

Cite this article: 

Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣) Collective transport of Lennard–Jones particles through one-dimensional periodic potentials 2017 Chin. Phys. B 26 070502

[1] Nelson P 2004 Biological Physics:Energy, Information, Life (New York:W. H. Freeman and Company)
[2] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[3] Peng B and Yu Y X 2008 Langmuir 24 12431
[4] Yu Y X 2009 J. Chem. Phys. 131 024704
[5] Peng B and Yu Y X 2008 J. Phys. Chem. B 112 15407
[6] Liu X, Schnell S K, Simon J M, Bedeaux D, Kjelstrup S, Bardow A and Vlugt T J 2011 J. Phys. Chem. B 115 12921
[7] Chvoj Z 2008 J. Stat. Mech-Theory. E 2008 08002
[8] Prinsen P and Odijk T 2007 J. Chem. Phys. 127 115102
[9] Yu Y X, Tian A W and Gao G H 2005 Phys. Chem. Chem. Phys. 7 2423
[10] Zhong C, Chen Z Q, Yang W G and Xia H 2013 Acta. Phys. Sin. 62 214207 (in Chinese)
[11] Tarasenko A 2014 J. Chem. Phys. 141 034117
[12] Siems U and Nielaba P 2015 Phys. Rev. E 91 022313
[13] Chou T and Lohse D 1999 Phys. Rev. Lett. 82 3552
[14] Ai B Q 2009 Phys. Rev. E 80 011113
[15] Huang X Q, Deng P and Ai B Q 2013 Physica A 392 411
[16] Koumakis N, Maggi C and Di Leonardo R 2014 Soft Matter 10 5695
[17] Wang S M, Yu Y X and Gao G H 2006 J. Membrane. Sci. 271 140
[18] Jiaye S and Hongxia G 2011 Acs Nano 5 351
[19] Rinne K F, Gekle S, Bonthuis D J and Netz R R 2012 Nano Lett. 12 1780
[20] Li F G and Ai B Q 2011 Chem. Phys. 388 43
[21] Allen T W, Bliznyuk A, Rendell A P, Kuyucak S and Chung S H 2000 J. Chem. Phys. 112 8191
[22] Mashl R J, Tang Y Z, Schnitzer J and Jakobsson E 2001 Biophys. J. 81 2473
[23] Allen T W and Chung S H 2001 Bba-Biomembranes. 1515 83
[24] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[25] Skoulidas A I, Ackerman D M, Johnson J K and Sholl D S 2002 Phys. Rev. Lett. 89 185901
[26] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[27] Adams D J 1975 Mol. Phys. 29 307
[28] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[29] Allen M P 1987 Computer Simulation of Liquids (United States:Clarendon Press)
[30] Cracknell R F, Nicholson D and Quirke N 1995 Phys. Rev. Lett. 74 2463
[31] Wen J L, Zheng D Q and Zhong W R 2015 Rsc. Adv. 5 99573
[32] Xu Z C, Zheng D Q, Ai B Q, Hu B and Zhong W R 2015 Aip. Adv. 5 107145
[33] Girifalco L A, Hodak M and Lee R S 2000 Phys. Rev. B 62 13104
[34] Cracknell R F, Nicholson D and Quirke N 1995 Phys. Rev. Lett. 74 2463
[35] Reguera D and Rubi J M 2001 Phys. Rev. E 64 061106
[36] Li R S 1995 Equilibrium and non-equilibrium Statistical Mechanics (Beijing:Tsinghua University Press)
[37] Chen P R, Xu Z C, Gu Y and Zhong W R 2016 Chin. Phys. B 25 086601
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[3] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[4] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[5] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[6] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[9] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[15] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
No Suggested Reading articles found!