ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dynamic thermal modeling and parameter identification for monolithic laser diode module |
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣) |
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
|
|
Abstract We improve the thermal equivalent-circuit model of the laser diode module (LDM) to evaluate its thermal dynamic property and calculate the junction temperature of the laser diode with a high accuracy. The thermal parameters and the transient junction temperature of LDM are modeled and obtained according to the temperature of the thermistor integrated in the module. Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines, and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.
|
Received: 22 July 2012
Revised: 07 September 2012
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60938002), the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ06016501), and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCYBJC04900). |
Corresponding Authors:
Du Zhen-Hui
E-mail: duzhenhui@tju.edu.cn
|
Cite this article:
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣) Dynamic thermal modeling and parameter identification for monolithic laser diode module 2013 Chin. Phys. B 22 034203
|
[1] |
Ryabtsev G, Kuzmin A, Ges J, Gorban Y, Soukieh M, Konyaev V and Stręk W 1995 J. Appl. Spectrosc. 62 900
|
[2] |
Ryu H, Ha K, Chae J, Nam O and Park Y 2005 Appl. Phys. Lett. 87 093506
|
[3] |
Liu Y T, Cao Q, Song G F and Chen L H 2009 Laser Phys. 19 400
|
[4] |
Kirkup L, Kalceff W and McCredie G 2007 J. Appl. Spectrosc. 101 023118
|
[5] |
Jeong J H, Kim K C, Lee J I, Kim H J and Han I K 2008 IEEE Photonic. Technol. Lett. 20 1354
|
[6] |
Liu X S, Hu M H, Caneau C G, Bhat R and Zah C E 2006 IEEE Tran. Compon. Pack. Technol. 29 268
|
[7] |
Werle P 1998 Spectrochimica. Acta Part A. 54 197
|
[8] |
Buus J, Amann M C and Blumenthal D J 2005 Tunable Laser Diodes and Related Optical Sources (2nd edn.) (New York: Wiley Press) p. 96
|
[9] |
An Y, Du Z H, Liu J W and Xu K X 2012 Acta Phys. Sin. 61 034207 (in Chinese)
|
[10] |
Liu J W, Du Z H, Li J Y, Qi R B and Xu K X 2011 Acta Phys. Sin. 60 074213 (in Chinese)
|
[11] |
Feng M X, Zhang S M, Jiang D S, Liu J P, Wang H, Zeng C, Li Z C, Wang H B, Wang F and Yang H 2012 Chin. Phys. B 21 084209
|
[12] |
Mulvihill G and O'Dowd R 2005 J. Lightwave Technol. 23 4101
|
[13] |
Zhou S and Zhang X P 2007 IEEE Photonic. Technol. Lett. 19 683
|
[14] |
Chen C, Xin G F, Qu R H and Fang Z J 2006 Opt. Commun. 260 223
|
[15] |
Franklin C F, Powell J D and Workman M L 1998 Digital Control of Dynamic System (3rd edn.) (Boston: Addison Wesley Longman Press) p. 56
|
[16] |
Gilbert S L, Swann W C and Dennis T 2001 Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications 4269 184
|
[17] |
Lineykin S and Ben-Yaakov S 2005 IEEE Power Electron. Lett. 3 63
|
[18] |
Wey T 2006 Proceedings of IEEE-NEWCAS June 18-21, 2006 Gatineau, Canada 7 277
|
[19] |
Mitrani D, Salazar J, Turo A, Garcia M J and Chavez J A 2009 Microelectronic. J. 40 1398
|
[20] |
Yang M W and Zhou Z Y 2008 Optoelectron. Lett. 4 180
|
[21] |
Gong C M, Chen Z, Wu Z, Chang G Q, Qian R M and Chen Y F 2006 J. Semicond. 27 944
|
[22] |
Li J Y, Du Z H, Qi R B and Xu K X 2012 Acta Opt. Sin. 32 0130004
|
[23] |
Rothman L S, Jacquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Chackerian C Jr, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P and Wagner G 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139
|
[24] |
Lindgren S, Ahlfeldt H, Kerzar B and Kjebon O 1996 Proceedings of the 22nd European Conference on Optical Communication September 15-19, 1996 Oslo, Norway, p. 97
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|