Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 084501    DOI: 10.1088/1674-1056/25/8/084501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The anisotropy of free path in a vibro-fluidized granular gas

Yifeng Mei(梅一枫)1, Yanpei Chen(陈延佩)1, Wei Wang(王维)1, Meiying Hou(厚美瑛)2
1 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The free path of a vibro-fluidized two-dimensional (2D) inelastic granular gas confined in a rectangular box is investigated by 2D event-driven molecular simulation. By tracking particles in the simulation, we analyze the local free path. The probability distribution of the free path shows a high tail deviating from the exponential prediction. The anisotropy of the free path is found when we separate the free path to x and y components. The probability distribution of y component is exponential, while x component has a high tail. The probability distribution of angle between the relative velocity and the unit vector joined two particle centers deviates from the distribution of two random vectors, indicating the existence of the dynamic heterogeneities in our system. We explain these results by resorting to the kinetic theory with two-peak velocity distribution. The kinetic theory agrees well with the simulation result.

Keywords:  free path      granular gases      two-peak velocity distribution  
Received:  15 March 2016      Revised:  18 April 2016      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  51.10.+y (Kinetic and transport theory of gases)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB215003), the National Natural Science Foundation of China (Grant No. 91334204), the Fund from the Chinese Academy of Sciences (Grant No. XDA07080100), and China Postdoctoral Science Foundation (Grant No. 2014M561071).

Corresponding Authors:  Yanpei Chen     E-mail:  ypchen@ipe.ac.cn

Cite this article: 

Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛) The anisotropy of free path in a vibro-fluidized granular gas 2016 Chin. Phys. B 25 084501

[1] Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57
[2] Goldhirsch I 2003 Ann. Rev. Fluid Mech. 35 267
[3] Nichol K, Daniels K E 2012 Phys. Rev. Lett. 108 018001
[4] Wang W and Chen Y P 2015 Advances in Chemical Engineering, Chapter Four, Mesoscale Modeling:Beyond Local Equilibrium Assumption for Multiphase Flow (Academic Press) pp. 193-277
[5] Puglisi A, Loreto V, Marconi U M B, Petri A and Vulpiani A 1998 Phys. Rev. Lett. 81 3848
[6] Losert W, Cooper D G W, Delour J, Kudrolli A and Gollub J P 1999 Chaos 9 682
[7] Olafsen J S and Urbach J S 1999 Phys. Rev. E 60 R2468
[8] Brey J J, Ruiz-Montero M J and Moreno F 2000 Phys. Rev. E 62 5339
[9] Herbst O, Muller P, Otto M and Zippelius A 2004 Phys. Rev. E 70 051313
[10] Chen Y P, Evesque P and Hou M Y 2014 Engineering Computations 32 1066
[11] Chen Y P, Evesque P and Hou M Y 2012 Chin. Phys. Lett. 29 074501
[12] Chen Y P, Hou M Y, Jiang Y M and Liu M 2014 Phys. Rev. E 88 052204
[13] Brilliantov N V and Pöschel T 2004 Kinetic Theory of Granular Gases (New York:Oxford University Press) pp. 12-15
[14] Vincenti W G and Kruger C H 1956 Introduction to Physical Gas Dynamics (New York:John Wiley and Sons) pp. 12-15
[15] Kadanoff L P 1999 Rev. Mod. Phys. 71 435
[16] Grossman E L, Zhou Tong and Ben-Naim E 1991 Phys. Rev. E 55 4200
[17] Blair D L and Kudrolli A 2003 Phys. Rev. E 67 041301
[18] Visco P, van Wijland F and Trizac E 2008 Phys. Rev. E 77 041117
[19] Coppex F, Droz M and Trizac E 2004 Phys. Rev. E 69 011303
[20] Tan M L and Goldhirsch I 1998 Phys. Rev. Lett. 81 3022
[21] Dufty J W and Brey J J 1999 Phys. Rev. Lett. 82 4566
[22] Tan M L and Goldhirsch I 1999 Phys. Rev. Lett. 82 4567
[23] Glasser B J and Goldhirsch I 2001 Phys. Fluids 13 407
[24] Cai T, Fan J and Jiang T 2013 The Journal of Machine Learning Research 14 1837
[25] Mei Y, Chen Y and Wang W 2015 "Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies" (arXiv:1508.02871)
[26] Chapman S and Cowling T G 1970 The Mathematical Theory of Non-uniform Gases (Cambridge:Cambridge University Press) pp. 89-99
[1] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[2] Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas
Zhang Yin (张因), Li Yin-Chang (李寅阊), Liu Rui (刘锐), Cui Fei-Fei (崔非非), Pierre Evesque, Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2013, 22(5): 054701.
[3] Electron inelastic mean free paths in solids: A theoretical approach
Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura. Chin. Phys. B, 2012, 21(9): 093402.
[4] Ion-induced kinetic electron emission from 6LiF,7LiF and MgF2 thin films
S. Ullah, A. H. Dogar, M. Ashraf, and A. Qayyum. Chin. Phys. B, 2010, 19(8): 083401.
[5] Investigation of the mean free path of projectile fragments produced in 16O-Em collision at 60 A GeV
Zhang Dong-Hai (张东海), Gong Jin-Sheng (巩进生). Chin. Phys. B, 2004, 13(7): 1000-1004.
[6] INTERACTION MEAN FREE PATH OF He PROJECTILE FRAGMENTS FROM 16O-EM COLLISION AT 60 A GeV
Zhang Dong-hai (张东海), Sun Han-cheng (孙汉城), G. GHARIBI. Chin. Phys. B, 2001, 10(1): 21-26.
No Suggested Reading articles found!