1 Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; 2 College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; 3 College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Chin
Abstract We use the ferromagnetic resonance (FMR) method to study the properties of ferromagnetic thin film, in which external stress anisotropy, fourfold anisotropy and uniaxial anisotropy are considered. The analytical expressions of FMR frequency, linewidth and the imaginary part of magnetic susceptibility are obtained. Our results reveal that the FMR frequency and the imaginary part of magnetic susceptibility are distinctly enhanced, and the frequency linewidth or field linewidth are broadened due to a strong external stress anisotropy field. The hard-axis and easy-axis components of magnetization can be tuned significantly by controlling the intensity and direction of stress and the in-plane uniaxial anisotropy field.
Fund: Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 2019MS01021), the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region, China (Grant No. NJZY21454), and the National Natural Science Foundation of China (Theoretical Physics) (Grant No. 11947414).
Corresponding Authors:
Jianhong Rong
E-mail: jhrong502@163.com
Cite this article:
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞) Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy 2022 Chin. Phys. B 31 017601
[1] Meckenstock R, Spoddig D, Himmelbauer K, Krenn H, Doi M, Keune W, Frait Z and Pelzl J 2002 J. Magn. Magn. Mater.240 410 [2] Hamida B A, Sievers S, Pierz K and Schumacher H W 2013 J. Appl. Phys.114 123704 [3] Kumar R, Samantaray B and Hossain Z 2019 J. Phys.: Condens. Matter.31 435802 [4] Wu S, Abe K, Nakano T, Mewes T, Mewes C, Mankey G J and Suzuki T 2019 Phys. Rev. B99 144416 [5] Seemann K 2021 J. Magn. Magn. Mater.529 167850 [6] Rodríguez-Suárez R L, Oliveira A B, Estrada F, Maior D S, Arana M, Santos O A, Azevedo A and Rezende S M 2018 J. Appl. Phys.123 043901 [7] Rezende S M, Azevedo A, Lucena M A and de Aguiar F M 2001 Phys. Rev. B63 214418 [8] Rezende S M, Lucena M A, Azevedo A, de Aguiar F M, Fermin J R and Parkin S S P 2003 J. Appl. Phys.93 7717 [9] Lee H, Wang Y H A, Mewes C K A, Butler W H, Mewes T, Maat S, York B, Carey M J and Childress J R 2009 Appl. Phys. Lett.95 082502 [10] Mohammadi J B, Jones J M, Paul S, Khodadadi B, Mewes C K A, Mewes T and Kaiser C 2017 Phys. Rev. B95 064414 [11] Wei Y J, Akansel S, Thersleff T, Harward I, Brucas R, Ranjbar M, Jana S, Lansaker P, Pogoryelov Y, Dumas R K, Leifer K, Karis O, Åkerman J, Celinski Z and Svedlindh P 2015 Appl. Phys. Lett.106 042405 [12] Chen H, Chen Y P, Wang T, Xie Y S, Franco A F and Xiao J Q 2020 IEEE Trans. Magn.56 2800506 [13] Mizukami S, Ando Y and Miyazaki T 2001 J. Magn. Magn. Mater.226-230 1640 [14] Sossmeier K D, Beck F, Gomes R C, Schelp L F and Cararaetc M 2010 J. Phys. D: Appl. Phys.43 055003 [15] Wang J, Tu H Q, Liang J, Zhai Y, Liu R B, Yuan Y, Huang L A, Liu T Y, Liu B, Meng H, You B, Zhang W, Xu Y B and Du J 2020 Chin. Phys. B29 107503 [16] Wang C L, Zhang S H, Li S D, Du H L, Zhao G X and Cao D R 2020 Chin. Phys. B29 046202 [17] Layadi A 2012 J. Appl. Phys.112 073901 [18] Zhang L, Rong J H, Yun G H, Wang D and Bao L B 2016 Mater. Res. Express3 076101 [19] Gandhi A C and Lin J G 2017 J. Phys.: Condens. Matter.29 215802 [20] Rong J H, Zhang L, Yun G H and Bao L B 2019 Indian J. Phys.93 207 [21] Choi S, Bac S K, Liu X Y, Lee S, Dong S, Dobrowolska M and Furdyna J K 2019 Sci. Rep.9 13061 [22] Huang Y, Wang X Q, Wu H L, Li X L, Feng H M, Liu Y Y, Liu W S, Ma Y X, Liu Q F and Wang J B 2020 J. Magn. Magn. Mater.494 165756 [23] Wang C M, Zhang S H, Huang Y C, Sang T, Cao D R, Wang X, Xu J, Zhao G X, Wang C L and Li S D 2021 J. Magn. Magn. Mater.527 167801 [24] Sipeky A and Ivanyi A 2006 Phys. B372 177 [25] Gueye M, Zighem F, Belmeguenai M, Gabor M, Tiusan C and Faurie D 2016 J. Phys. D: Appl. Phys.49 265001 [26] Li S D, Miao G X, Cao D R, Li Q, Xu J, Wen Z, Dai Y Y, Yan S S and Lu Y G 2018 ACS Appl. Mater. Interfaces10 8853 [27] Wang H, Rong J H, Yun G H and Bao L B 2019 Acta. Phys. Pol. A136 405 [28] Wang H, Zhou J Y, Wang Y N and Ma R J 2020 Indian J. Phys.95 2359 [29] Layadi A 2020 J. Appl. Phys.127 223907 [30] Smit J and Beljers H G 1955 Philips Res. Rep.10 113 [31] Suhl H 1955 Phys. Rev.97 555 [32] Celinski Z, Urquhart K B and Heinrich B 1997 J. Magn. Magn. Mater.166 6 [33] Toliński T, Lenz K, Lindner J, Kosubek E, Baberschke K, Spoddig D and Meckenstock R 2003 Solid State Commun.128 385
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.