Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017104    DOI: 10.1088/1674-1056/ac00a0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices

Huihui He(何慧卉)1,2 and Shenyuan Yang(杨身园)1,2,†
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Using first-principles calculations based on density functional theory, we have systematically studied the influence of in-plane lattice constant and thickness of slabs on the concentration and distribution of two-dimensional hole gas (2DHG) in AlN/GaN superlattices. We show that the increase of in-plane lattice constant would increase the concentration of 2DHG at interfaces and decrease the valence band offset, which may lead to a leak of current. Increasing the thickness of AlN and/or decreasing the thickness of GaN would remarkably strengthen the internal field in GaN layer, resulting in better confinement of 2DHG at AlN/GaN interfaces. Therefore, a moderate larger in-plane lattice constant and thicker AlN layer could improve the concentration and confinement of 2DHG at AlN/GaN interfaces. Our study could serve as a guide to control the properties of 2DHG at III-nitride interfaces and help to optimize the performance of p-type nitride-based devices.
Keywords:  two-dimensional hole gas      III-nitride interfaces      polarization      first-principles calculations  
Received:  18 March 2021      Revised:  07 May 2021      Accepted manuscript online:  13 May 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Eq (III-V semiconductors)  
  73.21.Cd (Superlattices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2202801) and the National Natural Science Foundation of China (Grant No. 12074369). The calculations were performed on TianHe-2 at National Supercomputer Center in Lv Liang of China.
Corresponding Authors:  Shenyuan Yang     E-mail:  syyang@semi.ac.cn

Cite this article: 

Huihui He(何慧卉) and Shenyuan Yang(杨身园) First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices 2022 Chin. Phys. B 31 017104

[1] Fujita S 2015 Jpn. J. Appl. Phys. 54 030101
[2] Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D: Appl. Phys. 51 163001
[3] Jones E A, Wang F F and Costinett D 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 707
[4] Nakamura S and Krames M R 2013 Proc. IEEE 101 2211
[5] Dong Y, Tian B, Kempa T J and Lieber C M 2009 Nano Lett. 9 2183
[6] Tsao J Y, Hollis M A and Kaplar R J 2017 Adv. Electron. Mater 4 1600501
[7] Van de Walle C G, Stampfl C, Neugebauer J, McCluskey M D and Johnson N M 1999 MRS Internet J. Nitride semicond. Res. 4 890
[8] Crawford M H 2017 Semiconductors and Semimetals Vol. 96 (Elsevier) pp. 3-44
[9] Strite S and Morkoζ H 1992 J. Vac. Sci. Technol. B 10 1237
[10] Park J H, Kim D Y, Schubert E F, Cho J and Kim J K 2018 ACS Energy Lett. 3 655
[11] Nakarmi M L, Kim K H, Li J, Lin J Y and Jiang H X 2003 Appl. Phys. Lett. 82 3041
[12] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[13] Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S and Mishra U K 2001 J. Appl. Phys. 90 5196
[14] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[15] Zhao J, Lin Z, Corrigan T D, Wang Z, You Z and Wang Z 2007 Appl. Phys. Lett. 91 173507
[16] Saito W, Takada Y, Kuraguchi M, Tsuda K and Omura I 2006 IEEE Trans. Electron Devices 53 356
[17] Eastman L F, Tilak V, Smart J, Green B M, Chumbes E M, Dimitrov R, Hyungtak Kim, Ambacher O S, Weimann N, Prunty T, Murphy M, Schaff W J and Shealy J R 2001 IEEE Trans. Electron Devices 48 479
[18] Hsu L and Walukiewicz W 1999 Appl. Phys. Lett. 74 2405
[19] Wei, Qiyuan, Wu Z, Sun K, Ponce F A, Hertkorn J and Scholz F 2009 Appl. Phys. Express 2 121001
[20] Nakajima A, Liu P, Ogura M, Makino T, Nishizawa S, Yamasaki S, Ohashi H, Kakushima K and Iwai H 2013 Appl. Phys. Express 6 091002
[21] Reuters B, Hahn H, Pooth A, Heuken M, Kalisch H and Vescan A 2014 J. Phys. D 47 175103
[22] Chaudhuri R, Bader S J, Chen Z, Muller D A, Xing H G and Jena D 2019 Science 365 1454
[23] Xiao L J, Fan C, Ruo L J, Jian J Z, Bo W, Ping H, Zi L X, Rong Z and You D Z 2005 Chin. Phys. Lett. 22 454
[24] Al Mustafa N, Granzner R, Polyakov V M, Racko J, Mikolášek M, Breza J and Schwierz F 2012 J. Appl. Phys. 111 044512
[25] Peng E, Wang X, Xiao H, Wang C, Yin H, Chen H, Feng C, Jiang L, Hou X and Wang Z 2013 J. Alloys Compd. 576 48
[26] Yan J, Wang X, Wang Q, Qu S, Xiao H, Peng E, Kang H, Wang C, Feng C, Yin H, Jiang L, Li B, Wang Z and Hou X 2014 J. Appl. Phys. 116 054502
[27] Yan J, Wang Q, Wang X, Feng C, Xiao H, Liu S, Gong J, Liu F and Li B 2016 J. Appl. Phys. 120 124501
[28] Lakdja A, Bouhafs B and Ruterana P 2005 Comput. Mater. Sci 33 157
[29] Cai D, Kang J and Guo G Y 2009 Phys. Rev. B 80 045311
[30] Cui X Y, Delley B and Stampfl C 2010 J. Appl. Phys 108 103701
[31] Gorczyca I, Suski T, Christensen N E and Svane A 2018 J. Phys.: Condens. Matter 30 063001
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
[37] Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442
[38] Adamski N L, Dreyer C E and Van de Walle C G 2019 Appl. Phys. Lett. 115 232103
[39] Dreyer C E, Janotti A, Van de Walle C G and Vanderbilt D 2016 Phys. Rev. X 6 021038
[40] Madelung O 2004 Semiconductors: Data Handbook ed O Madelung (Berlin, Heidelberg: Springer) pp. 71-172
[41] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521
[42] Wright A F and Nelson J S 1995 Phys. Rev. B 51 7866
[43] Zoroddu A, Bernardini F, Ruggerone P and Fiorentini V 2001 Phys. Rev. B 64 045208
[44] Resta R and Vanderbilt D 2007 Physics of Ferroelectrics vol. 105 (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 31-68
[45] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[46] Betancourt J, Saavedra-Arias J J, Burton J D, Ishikawa Y, Tsymbal E Y and Velev J P 2013 Phys. Rev. B 88 085418
[47] Mishra R, Restrepo O D, Rajan S and Windl W 2011 Appl. Phys. Lett. 98 232114
[48] Qin J, Zhou Q, Liao B and Wang H 2018 Electronics 7 410
[49] Nakajima A, Liu P, Ogura M, Makino T, Kakushima K, Nishizawa S, Ohashi H, Yamasaki S and Iwai H 2014 J. Appl. Phys. 115 153707
[50] Martin G, Botchkarev A, Rockett A and Morkoç H 1996 Appl. Phys. Lett. 68 2541
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[8] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[9] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[10] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[11] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[12] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[13] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[14] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[15] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
No Suggested Reading articles found!