ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode |
Tao Ma(马涛)1,2,†, Yong-Sheng Tian(田永生)1, Shao-Hui Liu(刘少晖)1, Jia-He Ma(马家赫)1, Heng Liu(刘恒)1,3, and Fang Wang(王芳)1,2 |
1 College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China; 2 Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China; 3 Academician Workstation of Electromagnetic Wave Engineering of Henan Province, Xinxiang 453007, China |
|
|
Abstract A biological sensing structure with a high-order mode ($\mathrm{E}_{21}^{y}$) is designed, which is composed of a suspended racetrack micro-resonator (SRTMR) and a microfluidic channel. The mode characteristics, coupling properties, and sensing performances are simulated by using the finite element method (FEM). To analyze the mode confinement property, the confinement factors in the core and cladding of the suspended waveguide for the $\mathrm{E}_{11}^{x}$, $\mathrm{E}_{11}^{y}$, and $\mathrm{E}_{21}^{y}$ are calculated. The simulation results show that the refractive index (RI) sensitivity of the proposed sensing structure can be improved by using the high-order mode ($\mathrm{E}_{21}^{y}$). The RI sensitivity for the $\mathrm{E}_{21}^{y}$ mode is ~ 201 nm/RIU, which is twice to thrice higher than those for the $\mathrm{E}_{11}^{x}$ mode and the $\mathrm{E}_{11}^{y}$ mode. Considering a commercial spectrometer, the proposed sensing structure based on the SRTMR achieves a limit of detection (LOD) of ~ 4.7×10-6 RIU. Combined with the microfluidic channel, the SRTMR can possess wide applications in the clinical diagnostic assays and biochemical detections.
|
Received: 18 January 2021
Revised: 19 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
42.82.-m
|
(Integrated optics)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
87.85.fk
|
(Biosensors)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075057) and Ph. D. Program of Henan Normal University, China (Grant Nos. 5101239170010 and gd17167). |
Corresponding Authors:
Tao Ma
E-mail: matao@htu.edu.cn
|
Cite this article:
Tao Ma(马涛), Yong-Sheng Tian(田永生), Shao-Hui Liu(刘少晖), Jia-He Ma(马家赫), Heng Liu(刘恒), and Fang Wang(王芳) Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode 2021 Chin. Phys. B 30 114208
|
[1] Novack A, Streshinsky M, Ding R, Liu Y, Lim A E, Lo G, Baehr-Jones T and Hochberg M 2014 Nanophotonics 3 205 [2] Selvaraja S K, Bogaerts W, Dumon P, Van Thourhout D and Baets R 2010 IEEE J. Sel. Top. Quant. 16 316 [3] Xu X, Jin X, Gao H, Cheng J, Lu Y, Chen D and Yu L 2020 Acta Phys. Sin. 69 184207 (in Chinese) [4] Guo J and Dai D 2018 Chin. Phys. B 27 104208 [5] Wang Z, Liu H, Sun Q, Huang N, Li S and Han J 2016 J. Laser Phys. 26 075403 [6] Ariannejad M M, Akbari E, Thong P Y, Ghasemi M, Dehzangi A and Ahmad H 2019 Eur. Phys. J. D 73 176 [7] Xie J, Zhu X, Zang X, Cheng Q, Chen L and Zhu Y 2018 Opt. Mater. Express 8 50 [8] Tyler N A, Barreto J, Villarreal-Garcia G E, Bonneau D, Sahin D, O'Brien J L and Thompson M G 2016 Opt. Express 24 8797 [9] Zhou X, Liu L, Xu W, Song B, Sheng J, He M and Shi H 2015 Sci. Rep. 4 4572 [10] Van Eeghem A, Werquin S, Hoste J W, Goes A, Vanderleyden E, Bienstman P and Dubruel P 2017 Appl. Surf. Sci. 405 321 [11] Xiao T, Yu Y and Li Z 2017 Acta Phys. Sin. 66 217802 (in Chinese) [12] Vahala K J 2003 Nature 424 839 [13] Boyd R W and Heebner J E 2001 Appl. Opt. 40 5742 [14] Yang S, Wang Y and Sun H 2015 Adv. Opt. Mater. 3 1136 [15] Meng L, Wang M, Shen Y, Yang Y, Xu W, Zhang L and Wang K 2020 Acta Phys. Sin. 69 014203 (in Chinese) [16] Fard S T, Schmidt S, Shi W, Wu W, Jaeger N A F, Kwok E, Ratner D M and Chrostowski L 2017 Biomed. Opt. Express 8 500 [17] Khozeymeh F and Razaghi M 2018 J. Opt. Soc. Am. B 35 2734 [18] Khozeymeh F and Razaghi M 2019 Phys. Rev. Appl. 12 054045 [19] Khozeymeh F and Razaghi M 2018 IEEE Sens. J. 19 1299 [20] Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M and Charrier 2017 J. Opt. Mater. 72 596 [21] Girault P, Lorrain N, Lemaitre J, Poffo L, Guendouz M, Hardy I, Gadonna M, Gutierrez A, Bodiou L and Charrier 2015 J. Opt. Mater. 50 167 [22] Huang L, Yan H, Xu X, Chakravarty S, Tang N, Tian H and Chen R T 2017 Opt. Express 25 10527 [23] Feng J and Akimoto R 2015 IEEE Photon. Technol. Lett. 27 1601 [24] Rakhshani M R andMansouri-Birjandi M A 2018 Photon. Nanostruct. 32 28 [25] Ciminelli C, Campanella C M, Dell Olio F, Campanella C E and Armenise M N 2013 Prog. Quant. Electron. 37 51 [26] Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D and Baets R 2012 Laser Photon. Rev. 6 47 [27] Luan E, Yun H, Laplatine L, Dattner Y, Ratner D M and Cheung K C 2019 IEEE J. Sel. Top. Quant. 25 7300211 [28] Robinson J T, Preston K, Painter O and Lipson M 2008 Opt. Express 16 16659 [29] Xu D X, Vachon M, Densmore A, Ma R, Janz S, Delage A, Lapointe J, Cheben P, Schmid J H and Post E 2010 Opt. Express 18 22867 [30] Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaert D, Luyssaert B, Van Campenhout J, Bienstman P and Van Thourhout D 2005 J. Lightwave Technol. 23 401 [31] Chou S Y, Krauss P R and Renstrom P J 1996 Science 272 85 [32] Burek M J, Chu Y, Liddy M S Z, Patel P, Rochman J, Meesala S, Hong W, Quan Q, Mikhail M D, Lukin D and Lončar M 2014 Nat. Commun. 5 5718 [33] Zhang R, Sun J, Chen G, Cheng M and Jiang J 2017 Appl. Phys. Lett. 111 031102 [34] Chen P, Zhu Y, Shi Y, Dai D and He S 2012 Opt. Express 20 22531 [35] Wang C, Quan Q, Kita S, Li Y and Lončar M 2015 Appl. Phys. Lett. 106 261105 [36] Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming D R S and Chen Q 2016 Laser Photon. Rev. 10 962 [37] Watts B R, Zhang Z, Xu C, Cao X and Lin M 2012 Biomed. Opt. Express 3 2784 [38] Densmore A, Vachon M, Xu D X, Janz S, Ma R, Li Y H, Lopinski G, Delage A, Lapointe J, Luebbert C C, Liu Q Y, Cheben P and Schmid J H 2009 Opt. Lett. 34 3598 [39] Gervinskas G, Day D J and Juodkazis S 2012 Opt. Mater. Express 2 279 [40] Soltani M, Lin J, Saraf S N, Forties R A, Lipson M and Wang M in CLEO: 2013 San Jose, California: Optical Society of America, 2013, p. AM4M.3 [41] White I M and Fan X 2008 Opt. Express 16 1020 [42] Guider R, Gandolfi D, Chalyan T, Pasquardini L, Samusenko A, Pucker G, Pederzolli C and Pavesi L 2015 Sensors 15 17300 [43] Samusenko A, Gandolfi D, Pucker G, Chalyan T, Guider R, Ghulinyan M and Pavesi L 2016 J. Lightwave Technol. 34 969 [44] Voronin K V, Stebunov Y V, Voronov A A, Arsenin A V and Volkov V S 2020 Sensors 20 203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|