Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳)1, Jin-Jun Zhang(张进军)2,†, and Jian-Jun Zhang(张建军)2,‡
1 School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China; 2 School of Physics and Information Science, Shanxi Normal University, Linfen 041004, China
Abstract We study the Bose-Einstein condensation of parallel light in a two-dimensional nonlinear optical cavity, where the massive photons are converted into photon molecules (p-molecules). We extend the classical-field method to provide a description of the two-component system, and we also derive a coupled density equation which can be used to describe the conversion relation between photons and p-molecules. Furthermore, we obtain the chemical potential of the system, and we also find that the system can transform from the mixed photon and p-molecule condensate phase into a pure p-molecule condensate phase. Additionally, we investigate the collective excitation of the system. We also discuss the problem how the spontaneous decay of an atom is influenced by both the phase transition and collective excitation of the coupling system.
Fund: Project supported by the Graduate Science and Technology Innovation Project of Shanxi Normal University (Grant No. 01053011) and the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program (Grant No. 1G2017IHEPKFYJO1).
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军) Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity 2021 Chin. Phys. B 30 110301
[1] Bose 1924 Z. Phys.26 178 [2] Fang J S and Xiang P 2011 Chin. Phys. B20 040310 [3] Einstein J P and Macdonald A H 2004 Nature432 691 [4] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science316 1007 [5] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B20 020307 [6] Sun Y B, Wen P, Yoon Y, Liu G Q, Steger M, Pfeiffer L N, West K, Snoke D W and Nelso K A 2017 Phys. Rev. Lett.118 016602 [7] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B24 090308 [8] Weill R, Bekker A, Levit B and Fischer B 2019 Nat. Commun.10 747 [9] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature468 545 [10] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett.108 160403 [11] van der Wurff E C I, de leeuw A W, Duine R A and Stoof H T C 2014 Phys. Rev. Lett.113 135301 [12] Weiss C and Tempere J 2016 Phys. Rev. E94 042124 [13] Cheng Z 2016 Phys. Rev. A93 023829 [14] Mendonca J T and Tecas H 2017 Phys. Rev. A95 063611 [15] Kruchkov A J 2016 Phys. Rev. A93 043817 [16] Rajan R, Babu P R and Senthilnathan K 2016 Front. Phys.11 110502 [17] Strinati M C and Conti C 2014 Phys. Rev. A90 043853 [18] Dung D, Kurtscheid C, Damn T, Schmitt J, Vewinger F, Weitz M and Klaers J 2017 Nat. Photon.11 565 [19] Marelic J and Nyman R A 2015 Phys. Rev. A91 033813 [20] Schmitt J, Damm T, Dung D, Vewinger F, klaers J and Weitz M 2015 Phys. Rev. A92 011602 [21] de Leeuw A W, Stoof H T C and Duine R A 2013 Phys. Rev. A88 033829 [22] Chiocchetta A and Carusotto I 2014 Phys. Rev. A90 023633 [23] Sob'yania D N 2013 Phys. Rev. E88 022132 [24] kirton P and Keeling J 2015 Phys. Rev. A91 033826 [25] Fontaine Q, Bienaime T, Pigeon S, Giacobino E, Bramati A and Glorieux Q 2018 Phys. Rev. Lett.121 183604 [26] Leboeuf P and Moulieras S 2010 Phys. Rev. Lett.105 163904 [27] Sela E, Rosch A and Fleurov V 2014 Phys. Rev. A89 043844 [28] Prakapenia M A and Vereshchagin G V 2019 Europhys. Lett.128 50002 [29] Vyas V M, Panigrahi P K and Srinivasan V 2016 arXiv:1602.08280 [physics.optics] [30] Klaers J, Schmitt J, Damm T, Dung D, Vewinger F and Weitz M 2013 Proc. SPIE Int. Soc. Opt. Eng.8600 86000L [31] Chiao R Y and Boyce J 1999 Phys. Rev. A60 4114 [32] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2011 Appl. Phys. B105 17 [33] Santos G, Tonel A, Foerster A and Links J 2016 Phys. Rev. A73 023609 [34] Cheng D, Li Y, Feng E and Huang W Y 2017 Chin. Phys. B26 013402 [35] Liu Y X and Zhao B 2020 Chin. Phys. B29 023103 [36] Tanzi L, Cabrera C R, Sanz J, Cheiney P, Tomza M and Tarruell L 2018 Phys. Rev. A98 062712 [37] Castin Y and Dum R 1998 Phys. Rev. A57 3008 [38] Li S C, Liu J and Fu L B 2011 Phys. Rev. A83 042107 [39] Li S C and Fu L B 2011 Phys. Rev. A84 023605 [40] Bogoliubov N 1947 J. Phys. (USSR)11 23 [41] Duine R A and Stoof H T C 2003 Phys. Rev. Lett.91 150405 [42] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University) p. 206
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.