|
|
Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity |
Hui-Fang Wang(王慧芳)1, Jin-Jun Zhang(张进军)2,†, and Jian-Jun Zhang(张建军)2,‡ |
1 School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China; 2 School of Physics and Information Science, Shanxi Normal University, Linfen 041004, China |
|
|
Abstract We study the Bose-Einstein condensation of parallel light in a two-dimensional nonlinear optical cavity, where the massive photons are converted into photon molecules (p-molecules). We extend the classical-field method to provide a description of the two-component system, and we also derive a coupled density equation which can be used to describe the conversion relation between photons and p-molecules. Furthermore, we obtain the chemical potential of the system, and we also find that the system can transform from the mixed photon and p-molecule condensate phase into a pure p-molecule condensate phase. Additionally, we investigate the collective excitation of the system. We also discuss the problem how the spontaneous decay of an atom is influenced by both the phase transition and collective excitation of the coupling system.
|
Received: 19 January 2021
Revised: 08 March 2021
Accepted manuscript online: 06 April 2021
|
PACS:
|
03.50.-z
|
(Classical field theories)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.30.Jp
|
(Boson systems)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the Graduate Science and Technology Innovation Project of Shanxi Normal University (Grant No. 01053011) and the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program (Grant No. 1G2017IHEPKFYJO1). |
Corresponding Authors:
Jin-Jun Zhang, Jian-Jun Zhang
E-mail: jjzhang2021@163.com;yfzhangphys@163.com
|
Cite this article:
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军) Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity 2021 Chin. Phys. B 30 110301
|
[1] Bose 1924 Z. Phys. 26 178 [2] Fang J S and Xiang P 2011 Chin. Phys. B 20 040310 [3] Einstein J P and Macdonald A H 2004 Nature 432 691 [4] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007 [5] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307 [6] Sun Y B, Wen P, Yoon Y, Liu G Q, Steger M, Pfeiffer L N, West K, Snoke D W and Nelso K A 2017 Phys. Rev. Lett. 118 016602 [7] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308 [8] Weill R, Bekker A, Levit B and Fischer B 2019 Nat. Commun. 10 747 [9] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545 [10] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett. 108 160403 [11] van der Wurff E C I, de leeuw A W, Duine R A and Stoof H T C 2014 Phys. Rev. Lett. 113 135301 [12] Weiss C and Tempere J 2016 Phys. Rev. E 94 042124 [13] Cheng Z 2016 Phys. Rev. A 93 023829 [14] Mendonca J T and Tecas H 2017 Phys. Rev. A 95 063611 [15] Kruchkov A J 2016 Phys. Rev. A 93 043817 [16] Rajan R, Babu P R and Senthilnathan K 2016 Front. Phys. 11 110502 [17] Strinati M C and Conti C 2014 Phys. Rev. A 90 043853 [18] Dung D, Kurtscheid C, Damn T, Schmitt J, Vewinger F, Weitz M and Klaers J 2017 Nat. Photon. 11 565 [19] Marelic J and Nyman R A 2015 Phys. Rev. A 91 033813 [20] Schmitt J, Damm T, Dung D, Vewinger F, klaers J and Weitz M 2015 Phys. Rev. A 92 011602 [21] de Leeuw A W, Stoof H T C and Duine R A 2013 Phys. Rev. A 88 033829 [22] Chiocchetta A and Carusotto I 2014 Phys. Rev. A 90 023633 [23] Sob'yania D N 2013 Phys. Rev. E 88 022132 [24] kirton P and Keeling J 2015 Phys. Rev. A 91 033826 [25] Fontaine Q, Bienaime T, Pigeon S, Giacobino E, Bramati A and Glorieux Q 2018 Phys. Rev. Lett. 121 183604 [26] Leboeuf P and Moulieras S 2010 Phys. Rev. Lett. 105 163904 [27] Sela E, Rosch A and Fleurov V 2014 Phys. Rev. A 89 043844 [28] Prakapenia M A and Vereshchagin G V 2019 Europhys. Lett. 128 50002 [29] Vyas V M, Panigrahi P K and Srinivasan V 2016 arXiv:1602.08280 [physics.optics] [30] Klaers J, Schmitt J, Damm T, Dung D, Vewinger F and Weitz M 2013 Proc. SPIE Int. Soc. Opt. Eng. 8600 86000L [31] Chiao R Y and Boyce J 1999 Phys. Rev. A 60 4114 [32] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2011 Appl. Phys. B 105 17 [33] Santos G, Tonel A, Foerster A and Links J 2016 Phys. Rev. A 73 023609 [34] Cheng D, Li Y, Feng E and Huang W Y 2017 Chin. Phys. B 26 013402 [35] Liu Y X and Zhao B 2020 Chin. Phys. B 29 023103 [36] Tanzi L, Cabrera C R, Sanz J, Cheiney P, Tomza M and Tarruell L 2018 Phys. Rev. A 98 062712 [37] Castin Y and Dum R 1998 Phys. Rev. A 57 3008 [38] Li S C, Liu J and Fu L B 2011 Phys. Rev. A 83 042107 [39] Li S C and Fu L B 2011 Phys. Rev. A 84 023605 [40] Bogoliubov N 1947 J. Phys. (USSR) 11 23 [41] Duine R A and Stoof H T C 2003 Phys. Rev. Lett. 91 150405 [42] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University) p. 206 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|