Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110204    DOI: 10.1088/1674-1056/abff24
GENERAL Prev   Next  

Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions

Jia-Hui Wang(王佳慧)1,2,3,4, Guo-Yang Wang(王国阳)1,2,3,4, Xin Liu(刘欣)1,2,3,4, Si-Yu Shao(邵思雨)1,2,3,4, Hai-Yun Huang(黄海云)1,2,3,4, Chen-Xin Ding(丁晨鑫)4, Bo Su(苏波)1,2,3,4,†, and Cun-Lin Zhang(张存林)1,2,3,4
1 Beijing Advanced Innovation Centre for Imaging Theory and Technology, Beijing 100048, China;
2 Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China;
3 Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China;
4 Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  We fabricated a microfluidic chip with simple structure and good sealing performance, and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system. The tested liquids were deionised water and CuSO4, CuCl2, NaHCO3, Na2CO3 and NaCl solutions. The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases. The applied electric field alters the dipole moment of water molecules in the electrolyte solution, which affects the vibration and rotation of the whole water molecules, breaks the hydrogen bonds in the water, increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.
Keywords:  terahertz      microfluidic chip      electrolyte solution      electric field      transmission intensity  
Received:  19 February 2021      Revised:  15 April 2021      Accepted manuscript online:  08 May 2021
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  07.10.Cm (Micromechanical devices and systems)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61575131).
Corresponding Authors:  Bo Su     E-mail:  subo75@cnu.edu.cn

Cite this article: 

Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林) Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions 2021 Chin. Phys. B 30 110204

[1] Zhou R Y, Wang C, Xu W D and Xie L J 2019 Nanoscale 11 3445
[2] Wang H G, Song Q Y, Cai Y, Lin Q G, Lu X W, Shangguan H C, Ai Y X and Xu S X 2020 Chin. Phys. B 29 097404
[3] Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T and Yao J Q 2019 Acta Phys. Sin. 68 247802 (in Chinese)
[4] Dash J, Ray S, Devi N, Basutkar N, Ambade A V and Pesala B 2019 J. Mol. Struc-Theochem 1184 495
[5] Tang M J, Zhang M K, Yan S H, Xia L P, Yang Z B, Du C L, Cui H L and Wei D S 2018 J. Plos One 13 e0191515
[6] Sun Y W, Ming Y S, Wang Y X J, Ahuja A T, Zhang Y T and Pickwell-MacPherson E2011 World J. Radiol. 3 55
[7] Yang X, Liu W, Wang W A and Liu Y W 2017 Acta Laser Bio. Sin. 026 419
[8] Aoki K, Shiraki K and Hattori T 2013 Appl. Phys. Lett. 103 173704
[9] Exter M V, Fattinger C and Grischkowsky D 1989 Opt. Lett. 14 1128
[10] Ma Y Y, Huang H D, Hao S B, Tang W C, Zheng Z Y and Zhang Z 2019 Chin. Phys. B 28 060702
[11] Cui H, Zhang X B, Su J F, Yang Y Y, Fang Q and Wei X Y 2015 Optik 126 3533
[12] Duponchel L, Laurette S, Hatirnaz B, Treizebre A, Affouard F and Bocquet B 2013 Chemometrics and Intelligent Laboratory Systems 123 28
[13] Pan Z J, Zhang R T and Zhuang W 2016 Chin. Sci. 05 25
[14] Wen Y W, Su B, Wang J H, Wang G Y, Wu Y X, He J S and Zhang C L 2020 Opt. Eng. 59 055107
[15] Canuto S 2008 J. Springer Netherlands 6
[16] Kim H, Lee H, Lee G, Kim H and Cho M 2012 J. Chem. Phys. 136 124501
[17] Wei M M 2012 China University of Petroleum (East China)
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[14] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[15] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
No Suggested Reading articles found!