INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study |
Chao Wang(王超)1,†, Fan Wu(吴凡)1, Xiao Yang(杨肖)1, Ying-Cai Chen(陈英才)1, and Meng-Bo Luo(罗孟波)2 |
1 Department of Physics, Taizhou University, Taizhou 318000, China; 2 Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The injection of a self-avoiding flexible polymer into a spherical cavity under a driving force is studied by using Langevin dynamics simulation. For given polymer length (N) and driving force (f), the polymer can be completely injected into the cavity only when the radius of the cavity is larger than a transition radius (ReC). The dependence of ReC on N and f can be described by a scaling relation ReC∝N1/3f-δ. The value of δ changes from 4/15 in the small f region to 1/6 in the moderate f region due to the screening of the excluded-volume interaction between monomers. We find the complete injection time (τ) decreases monotonously with increasing the cavity radius or decreasing the polymer length. The simulation results are in good agreement with the theoretical predictions from the free energy analysis and a simple kinetic model.
|
Received: 06 January 2021
Revised: 27 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
82.35.Lr
|
(Physical properties of polymers)
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
82.37.-j
|
(Single molecule kinetics)
|
|
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20A040004) and the National Natural Science Foundation of China (Grant Nos. 11604232 and 11974305). |
Corresponding Authors:
Chao Wang
E-mail: chaowang0606@126.com
|
Cite this article:
Chao Wang(王超), Fan Wu(吴凡), Xiao Yang(杨肖), Ying-Cai Chen(陈英才), and Meng-Bo Luo(罗孟波) Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study 2021 Chin. Phys. B 30 108202
|
[1] Laemmli U K and Favre M 1973 J. Mol. Biol. 80 575 [2] Simon S M and Blobe G 1991 Cell 65 371 [3] Gabashvili I S, Gregory S T, Valle M, Grassucci R, Worbs M, Wahl M C, Dahlberg A E and Frank J 2001 Mol. Cell 8 181 [4] Helenius J, Ng D T W, Marolda C L, Walter P, Valvano M A and Aebi M 2002 Nature 415 447 [5] Smith D E, Tans S J, Smith S B, Grimes S, Anderson D L and Bustamante C 2001 Nature 413 748 [6] Fuller D N, Raymer D M, Kottadiel V I, Rao V B and Smith D E 2007 Proc. Natl. Acad. Sci. USA 104 16868 [7] Fuller D N, Raymer D M, Rickgauer J P, Robertson R M, Catalano C E, Anderson D L, Grimes S and Smith D E 2007 J. Mol. Biol. 373 1113 [8] Rickgauer J P, Fuller D N, Grimes S, Jardine P J, Anderson D L and Smith D E 2008 Biophys. J. 94 159 [9] Levy S L and Craighead H G 2010 Chem. Soc. Rev. 39 1133 [10] Lam E T, Hastie A, Lin C, Ehrlich D, Das S K, Austin M D, Deshpande P, Cao H, Nagarajan N, Xiao M and Kwok P Y 2012 Nat. Biotechnol. 30 771 [11] Sriram K K, Yeh J W, Lin Y L, Chang Y R and Chou C F 2014 Nucleic Acids Res. 42 e85 [12] Lacroix J, Pélofy S, Blatché C, Pillaire M J, Huet S, Chapuis C, Hoffmann J S and Bancaud A 2016 Small 12 5963 [13] Glasgow J and Tullman-Ercek D 2014 Appl. Microbiol. Biotechnol. 98 5847 [14] Yuan Z S, Liu Y M, Dai M, Yi X and Wang C Y 2020 Nanoscale Res. Lett. 15 80 [15] Wang C, Zhou Y L, Sun L Z, Chen Y C and Luo M B 2019 J. Chem. Phys. 150 164904 [16] Luo K, Ala-Nissila T, Ying S and Bhattacharya A 2008 Phys. Rev. Lett. 100 058101 [17] Liu X, Zhang Y, Nagel R, Reisner W and Dunbar W B 2019 Small 15 1901704 [18] Luo M B and Wang C 2013 Phys. Chem. Chem. Phys. 15 3212 [19] Cui R F, Chen Q H and Chen J X 2020 Nanoscale 12 12275 [20] Han J and Craighead H G 2000 Science 288 1026 [21] Kasianowicz J J, Brandin E, Branton D and Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770 [22] Wang C, Chen Y C, Zhang S and Luo M B 2014 Macromolecules 47 7215 [23] Magill M, Falconer C, Waller E and de Haan H W 2016 Phys. Rev. Lett. 117 247802 [24] Ding M, Duan X, Lu Y and Shi T 2015 Macromolecules 48 6002 [25] Li X, Pivkin I V and Liang H 2013 Polymer 54 4309 [26] Ambjörnsson T, Lomholt M A and Metzler R 2005 J. Phys.: Condens. Matter 17 S3945 [27] Abdolvahab R H, Ejtehadi M R and Metzler R 2011 Phys. Rev. E 83 011902 [28] Yu W and Luo K 2011 J. Am. Chem. Soc. 133 13565 [29] Park P J and Sung W 1998 J. Chem. Phys. 108 3013 [30] Sun L Z, Luo M B, Cao W P and Li H 2018 J. Chem. Phys. 149 024901 [31] Turner S W P, Cabodi M and Craighead H G 2002 Phys. Rev. Lett. 88 128103 [32] Park P J and Sung W 1998 Phys. Rev. E 57 730 [33] Wang C, Chen Y C, Zhang S, Qi H K, Luo M B 2020 Chin. Phys. B 29 108201 [34] Cacciuto A and Luijten E 2006 Nano Lett. 6 901 [35] Cacciuto A and Luijten E 2006 Phys. Rev. Lett. 96 238104 [36] Luo K, Metzler R, Ala-Nissila T and Ying S 2009 Phys. Rev. E 80 021907 [37] Huang H C and Hsiao P Y 2019 Phys. Rev. Lett. 123 267801 [38] Kantor Y and Kardar M 2004 Phys. Rev. E 69 021806 [39] Sakaue T 2007 Phys. Rev. E 76 021803 [40] Sakaue T 2010 Phys. Rev. E 81 041808 [41] Dubbeldam J L A, Rostiashvili V G, Milchev A and Vilgis T A 2012 Phys. Rev. E 85 041801 [42] Luo K, Ollila S T T, Huopaniemi I, Ala-Nissila T, Pomorski P, Karttunen M, Ying S C and Bhattacharya A 2008 Phys. Rev. E 78 050901 [43] Luo K, Ala-Nissila T, Ying S C and Metzler R 2009 Europhys. Lett. 88 68006 [44] Bhattacharya A, Morrison W H, Luo K, Ala-Nissila T, Ying S C, Milchev A and Binder K 2009 Eur. Phys. J. E 29 423 [45] Luo M B and Cao W P 2012 Phys. Rev. E 86 031914 [46] Huopaniemi I, Luo K, Ala-Nissila T and Ying S C 2006 J. Chem. Phys. 125 124901 [47] Luo K, Huopaniemi I, Ala-Nissila T and Ying S C 2006 J. Chem. Phys. 124 114704 [48] Luo K and Metzler R 2010 Phys. Rev. E 82 021922 [49] Muthukumar M 2001 Phys. Rev. Lett. 86 3188 [50] Chen Y C, Wang C and Luo M B 2007 J. Chem. Phys. 127 044904 [51] Ali I, Marenduzzo D and Yeomans J M 2004 J. Chem. Phys. 121 8635 [52] Zhang K and Luo K 2012 J. Chem. Phys. 136 185103 [53] Ali I, Marenduzzo D and Yeomans J M 2006 Phys. Rev. Lett. 96 208102 [54] Zhang K and Luo K 2013 Soft Matter 9 2069 [55] Polson J M and Heckbert D R 2019 Phys. Rev. E 100 012504 [56] Al-Naamani N and Ali I 2019 Phys. Rev. E 100 052412 [57] Al Lawati A, Ali I and Al Barwani M 2013 PLoS ONE 8 e52958 [58] Nagarajan K and Chen S B 2020 Macromol. Theor. Simul. 29 2000032 [59] Wang C, Wu F, Zhao B, Chen Y C and Luo M B 2020 Macromolecules 53 1694 [60] Sakaue T and Raphaël E 2006 Macromolecules 39 2621 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|