Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108202    DOI: 10.1088/1674-1056/abff21
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study

Chao Wang(王超)1,†, Fan Wu(吴凡)1, Xiao Yang(杨肖)1, Ying-Cai Chen(陈英才)1, and Meng-Bo Luo(罗孟波)2
1 Department of Physics, Taizhou University, Taizhou 318000, China;
2 Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  The injection of a self-avoiding flexible polymer into a spherical cavity under a driving force is studied by using Langevin dynamics simulation. For given polymer length (N) and driving force (f), the polymer can be completely injected into the cavity only when the radius of the cavity is larger than a transition radius (ReC). The dependence of ReC on N and f can be described by a scaling relation ReCN1/3f-δ. The value of δ changes from 4/15 in the small f region to 1/6 in the moderate f region due to the screening of the excluded-volume interaction between monomers. We find the complete injection time (τ) decreases monotonously with increasing the cavity radius or decreasing the polymer length. The simulation results are in good agreement with the theoretical predictions from the free energy analysis and a simple kinetic model.
Keywords:  polymer      injection      simulation      free energy  
Received:  06 January 2021      Revised:  27 April 2021      Accepted manuscript online:  08 May 2021
PACS:  82.35.Lr (Physical properties of polymers)  
  82.20.Wt (Computational modeling; simulation)  
  82.37.-j (Single molecule kinetics)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20A040004) and the National Natural Science Foundation of China (Grant Nos. 11604232 and 11974305).
Corresponding Authors:  Chao Wang     E-mail:  chaowang0606@126.com

Cite this article: 

Chao Wang(王超), Fan Wu(吴凡), Xiao Yang(杨肖), Ying-Cai Chen(陈英才), and Meng-Bo Luo(罗孟波) Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study 2021 Chin. Phys. B 30 108202

[1] Laemmli U K and Favre M 1973 J. Mol. Biol. 80 575
[2] Simon S M and Blobe G 1991 Cell 65 371
[3] Gabashvili I S, Gregory S T, Valle M, Grassucci R, Worbs M, Wahl M C, Dahlberg A E and Frank J 2001 Mol. Cell 8 181
[4] Helenius J, Ng D T W, Marolda C L, Walter P, Valvano M A and Aebi M 2002 Nature 415 447
[5] Smith D E, Tans S J, Smith S B, Grimes S, Anderson D L and Bustamante C 2001 Nature 413 748
[6] Fuller D N, Raymer D M, Kottadiel V I, Rao V B and Smith D E 2007 Proc. Natl. Acad. Sci. USA 104 16868
[7] Fuller D N, Raymer D M, Rickgauer J P, Robertson R M, Catalano C E, Anderson D L, Grimes S and Smith D E 2007 J. Mol. Biol. 373 1113
[8] Rickgauer J P, Fuller D N, Grimes S, Jardine P J, Anderson D L and Smith D E 2008 Biophys. J. 94 159
[9] Levy S L and Craighead H G 2010 Chem. Soc. Rev. 39 1133
[10] Lam E T, Hastie A, Lin C, Ehrlich D, Das S K, Austin M D, Deshpande P, Cao H, Nagarajan N, Xiao M and Kwok P Y 2012 Nat. Biotechnol. 30 771
[11] Sriram K K, Yeh J W, Lin Y L, Chang Y R and Chou C F 2014 Nucleic Acids Res. 42 e85
[12] Lacroix J, Pélofy S, Blatché C, Pillaire M J, Huet S, Chapuis C, Hoffmann J S and Bancaud A 2016 Small 12 5963
[13] Glasgow J and Tullman-Ercek D 2014 Appl. Microbiol. Biotechnol. 98 5847
[14] Yuan Z S, Liu Y M, Dai M, Yi X and Wang C Y 2020 Nanoscale Res. Lett. 15 80
[15] Wang C, Zhou Y L, Sun L Z, Chen Y C and Luo M B 2019 J. Chem. Phys. 150 164904
[16] Luo K, Ala-Nissila T, Ying S and Bhattacharya A 2008 Phys. Rev. Lett. 100 058101
[17] Liu X, Zhang Y, Nagel R, Reisner W and Dunbar W B 2019 Small 15 1901704
[18] Luo M B and Wang C 2013 Phys. Chem. Chem. Phys. 15 3212
[19] Cui R F, Chen Q H and Chen J X 2020 Nanoscale 12 12275
[20] Han J and Craighead H G 2000 Science 288 1026
[21] Kasianowicz J J, Brandin E, Branton D and Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770
[22] Wang C, Chen Y C, Zhang S and Luo M B 2014 Macromolecules 47 7215
[23] Magill M, Falconer C, Waller E and de Haan H W 2016 Phys. Rev. Lett. 117 247802
[24] Ding M, Duan X, Lu Y and Shi T 2015 Macromolecules 48 6002
[25] Li X, Pivkin I V and Liang H 2013 Polymer 54 4309
[26] Ambjörnsson T, Lomholt M A and Metzler R 2005 J. Phys.: Condens. Matter 17 S3945
[27] Abdolvahab R H, Ejtehadi M R and Metzler R 2011 Phys. Rev. E 83 011902
[28] Yu W and Luo K 2011 J. Am. Chem. Soc. 133 13565
[29] Park P J and Sung W 1998 J. Chem. Phys. 108 3013
[30] Sun L Z, Luo M B, Cao W P and Li H 2018 J. Chem. Phys. 149 024901
[31] Turner S W P, Cabodi M and Craighead H G 2002 Phys. Rev. Lett. 88 128103
[32] Park P J and Sung W 1998 Phys. Rev. E 57 730
[33] Wang C, Chen Y C, Zhang S, Qi H K, Luo M B 2020 Chin. Phys. B 29 108201
[34] Cacciuto A and Luijten E 2006 Nano Lett. 6 901
[35] Cacciuto A and Luijten E 2006 Phys. Rev. Lett. 96 238104
[36] Luo K, Metzler R, Ala-Nissila T and Ying S 2009 Phys. Rev. E 80 021907
[37] Huang H C and Hsiao P Y 2019 Phys. Rev. Lett. 123 267801
[38] Kantor Y and Kardar M 2004 Phys. Rev. E 69 021806
[39] Sakaue T 2007 Phys. Rev. E 76 021803
[40] Sakaue T 2010 Phys. Rev. E 81 041808
[41] Dubbeldam J L A, Rostiashvili V G, Milchev A and Vilgis T A 2012 Phys. Rev. E 85 041801
[42] Luo K, Ollila S T T, Huopaniemi I, Ala-Nissila T, Pomorski P, Karttunen M, Ying S C and Bhattacharya A 2008 Phys. Rev. E 78 050901
[43] Luo K, Ala-Nissila T, Ying S C and Metzler R 2009 Europhys. Lett. 88 68006
[44] Bhattacharya A, Morrison W H, Luo K, Ala-Nissila T, Ying S C, Milchev A and Binder K 2009 Eur. Phys. J. E 29 423
[45] Luo M B and Cao W P 2012 Phys. Rev. E 86 031914
[46] Huopaniemi I, Luo K, Ala-Nissila T and Ying S C 2006 J. Chem. Phys. 125 124901
[47] Luo K, Huopaniemi I, Ala-Nissila T and Ying S C 2006 J. Chem. Phys. 124 114704
[48] Luo K and Metzler R 2010 Phys. Rev. E 82 021922
[49] Muthukumar M 2001 Phys. Rev. Lett. 86 3188
[50] Chen Y C, Wang C and Luo M B 2007 J. Chem. Phys. 127 044904
[51] Ali I, Marenduzzo D and Yeomans J M 2004 J. Chem. Phys. 121 8635
[52] Zhang K and Luo K 2012 J. Chem. Phys. 136 185103
[53] Ali I, Marenduzzo D and Yeomans J M 2006 Phys. Rev. Lett. 96 208102
[54] Zhang K and Luo K 2013 Soft Matter 9 2069
[55] Polson J M and Heckbert D R 2019 Phys. Rev. E 100 012504
[56] Al-Naamani N and Ali I 2019 Phys. Rev. E 100 052412
[57] Al Lawati A, Ali I and Al Barwani M 2013 PLoS ONE 8 e52958
[58] Nagarajan K and Chen S B 2020 Macromol. Theor. Simul. 29 2000032
[59] Wang C, Wu F, Zhao B, Chen Y C and Luo M B 2020 Macromolecules 53 1694
[60] Sakaue T and Raphaël E 2006 Macromolecules 39 2621
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[11] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[12] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[15] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
No Suggested Reading articles found!