INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax |
Yan-Hui Li(李彦慧)1,2, Zhen-Sheng Zhong(钟振声)1,2,†, and Jie Ma(马杰)1,2 |
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China |
|
|
Abstract The mechanical stability of tRNAs contributes to their biological activities. The mitochondrial tRNAArg from Romanomermis culicivorax is the shortest tRNA ever known. This tRNA lacks D- and T-arms, represents a stem-bulge-stem architecture but still folds into a stable tertiary structure. Although its structure had been reported, studies on its mechanical folding and unfolding kinetic characteristics are lacking. Here, we directly measured the single-molecule mechanical folding and unfolding kinetics of the armless mt tRNAArg by using optical tweezers in different solution conditions. We revealed a two-step reversible unfolding pathway: the first and large transition corresponds to the unfolding of acceptor stem and bulge below 11 pN, and the second and small transition corresponds to the unfolding of anticodon arm at 12 pN-14 pN. Moreover, the free energy landscapes of the unfolding pathways were reconstructed. We also demonstrated that amino acid-chelated Mg2+(aaCM), which mimics the intracellular solution condition, stabilizes the bulge of mitochondrial tRNAArg possibly by reducing the topological constraints or stabilizing the possible local non-canonical base pairings within the bulge region. Our study revealed the solution-dependent mechanical stability of an armless mt tRNA, which may shed light on future mt tRNA studies.
|
Received: 09 July 2021
Revised: 04 August 2021
Accepted manuscript online: 17 August 2021
|
PACS:
|
82.37.Rs
|
(Single molecule manipulation of proteins and other biological molecules)
|
|
87.14.gn
|
(RNA)
|
|
87.15.Cc
|
(Folding: thermodynamics, statistical mechanics, models, and pathways)
|
|
87.15.La
|
(Mechanical properties)
|
|
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2017A030310085) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2018A050506034). |
Corresponding Authors:
Zhen-Sheng Zhong
E-mail: zhongzhsh@mail.sysu.edu.cn
|
Cite this article:
Yan-Hui Li(李彦慧), Zhen-Sheng Zhong(钟振声), and Jie Ma(马杰) Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax 2021 Chin. Phys. B 30 108203
|
[1] Gray M W, Burger G and Lang B F 1999 Science 283 1476 [2] Muller H J 1964 Mutat. Res.-Fund. Mol. M. 1 2 [3] Lynch M 1996 Mol. Biol. Evol. 13 209 [4] Nabholz B, Glémin S and Galtier N 2009 BMC Evol. Biol. 9 54 [5] Nabholz B, Glémin S and Galtier N 2008 Mol. Biol. Evol. 25 120 [6] Kuhle B, Chihade J and Schimmel P 2020 Nat. Commun. 11 969 [7] Zeviani M, Taroni F, Gellera C and DiDonato S 1995 Progress in Cell Research (Elsevier) pp. 223-224 [8] Nakamura M, Nakano S, Goto Y, Ozawa M, Nagahama Y, Fukuyama H, Akiguchi I, Kaji R and Kimura J 1995 Biochem. Biophys. Res. Commun. 214 86 [9] Isashiki Y, Nakagawa M, Ohba N, Kamimura K, Sakoda Y, Higuchi I, Izumo S and Osame M 1998 Acta Ophthalmol. Scand. 76 6 [10] Pavlakis S G, Phillips P C, DiMauro S, De Vivo D C and Rowland L P 1984 Ann. Neurol. 16 481 [11] Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S and Watanabe K 2000 FEBS Lett. 467 175 [12] Goto Y, Nonaka I and Horai S 1990 Nature 348 651 [13] Wolstenholme D R 1992 Int. Rev. Cytol. 141 173 [14] Wolstenholme D R, Macfarlane J L, Okimoto R and Wahleithner C 1987 Proc. Natl. Acad. Sci. USA 84 1324 [15] Wende S, Platzer E G, Jühling F, Pütz J, Florentz C, Stadler P F and Mörl M 2014 Biochimie 100 151 [16] Hanada T, Suzuki T, Yokogawa T, Takemoto-Hori C, Sprinzl M and Watanabe K 2001 Genes Cells 6 1019 [17] Tina J, Elke D F, Sonja B, Jens W, Joern P, Catherine F, Heike B, Claude S and Mario M 2018 Nucleic Acids Res. 46 9170 [18] Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Juehling T, Betat H, Sauter C and Moerl M 2020 Int. J. Mol. Sci. 21 9047 [19] Lorenz C, Lünse C E and M? rl M 2017 Biomolecules 7 35 [20] Théobald-Dietrich A, Frugier M, Giegé R and Rudinger-Thirion J 2004 Nucleic Acids Res. 32 1091 [21] McClain W H and Foss K 1988 Science 240 793 [22] Hou Y M and Schimmel P 1988 Nature 333 140 [23] Kuhle B, Chihade J and Schimmel P 2020 Nat. Commun. 11 969 [24] Flanagan J F, Namy O, Brierley I and Gilbert R J C 2010 Structure 18 257 [25] Zuker M 2003 Nucleic Acids Res. 31 3406 [26] Yang D, Liu W, Deng X, Xie W, Chen H, Zhong Z and Ma J 2020 Biophys. J. 119 852 [27] Leamy K A, Assmann S M, Mathews D H and Bevilacqua P C 2016 Q. Rev. Biophys. 49 e10 [28] Outten and E C 2001 Science 292 2488 [29] Bennett B D, Kimball E H, Gao M, Osterhout R, Van Dien S J and Rabinowitz J D 2009 Nat. Chem. Biol. 5 593 [30] Bar-Even A, Noor E, Flamholz A, Buescher J M and Milo R 2011 PLoS Comput. Biol. 7 e1002166 [31] Ryota Y, Bingaman J L, Frankel E A and Bevilacqua P C 2018 Nat. Commun. 9 2149 [32] Anthony P C, Perez C F, García-García C and Block S M 2012 Proc. Natl. Acad. Sci. USA 109 1485 [33] M. D, Wang, H., Yin, R., Landick, J., Gelles and Block S M 1997 Biophys. J. 72 1335 [34] Wolfram S 1984 Principles of Nucleic Acid Structure (New York, Springer) pp. 1-2 [35] Seol Y, Skinner G M and Visscher K 2004 Phys. Rev. Lett. 93 118102 [36] Bell and G. 1978 Science 200 618 [37] Li P T X, Vieregg J and Tinoco I, Jr. 2008 Annu. Rev. Biochem. 77 77 [38] Dudko O K, Hummer G and Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755 [39] Woodside M T, Behnke-Parks W M, Larizadeh K, Travers K, Herschlag D and Block S M 2006 Proc. Natl. Acad. Sci. USA 103 6190 [40] Tinoco I, Jr. 2004 Annu. Rev. Biophys. Biomol. Struct. 33 363 [41] Rueda D, Wick K, Mcdowell S E and Walter N G 2003 Biochemistry 42 9924 [42] Bizarro C V, Alemany A and Ritort F 2012 Nucleic Acids Res. 40 6922 [43] Mak C H and Phan E N H 2018 Biophys. J. 114 2059 [44] Zhong Z, Soh L H, Lim M H and Chen G 2015 ChemPlusChem 80 1267 [45] Sponer J, Leszczynski J and Hobza P 2001 Biopolymers 61 3 [46] Serebrov V, Clarke R J, Gross H J and Kisselev L 2001 Biochemistry 40 6688 [47] Li P T and Tinoco I Jr. 2009 J. Mol. Biol. 386 1343 [48] Voigts-Hoffmann F, Hengesbach M, Kobitski A Y, van Aerschot A, Herdewijn P, Nienhaus G U and Helm M 2007 J. Am. Chem. Soc. 129 13382 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|