Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107701    DOI: 10.1088/1674-1056/ac1b92
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics

Hui Sun(孙慧)1,3,†, Jiaying Niu(钮佳颖)1, Haiying Cheng(成海英)2, Yuxi Lu(卢玉溪)1, Zirou Xu(徐紫柔)1, Lei Zhang(张磊)1, and Xiaobing Chen(陈小兵)1
1 College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China;
2 School of Sino-German Engineering, Shanghai Technical Institute of Electronics&Information, Shanghai 201411, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The single-phase multiferroic Bi5Fe1-xNixTi3O15 (BFNT-x, x=0, 0.1, 0.2, 0.3, 0.4, and 0.5) ceramics were synthesized by a sol-gel auto-combustion method, and their microstructures, ferroelectric, magnetic, and dielectric properties were investigated in detail. All samples belong to layer-perovskited Aurivillius phase containing four perovskite units sandwiched between two Bi-O layers. Ni substitution can not only improve ferroelectricity but also enhance the magnetic properties. The BFNT-0.2 sample shows the largest remnant polarization (2Pr ~ 11.6 μC/cm2) and the highest remnant magnetization (2Mr ~ 0.244 emu/g). The enhancement of the magnetic properties may mainly originate from the spin canting of Fe/Ni-O octahedra via Dzyaloshinskii-Moriya (DM) interaction. In order to explore the influence of valance state of magnetic ions on the properties, the x-ray photoelectron spectroscopy was carried out. Furthermore, structural, ferroelectric, and magnetic transitions were also investigated.
Keywords:  layer-perovskited oxides      ferroelectricity      weak ferromagnetism      phase transition  
Received:  02 July 2021      Revised:  31 July 2021      Accepted manuscript online:  07 August 2021
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.80.B- (Phase transitions and Curie point)  
  91.60.Pn (Magnetic and electrical properties)  
  75.47.Lx (Magnetic oxides)  
Corresponding Authors:  Hui Sun     E-mail:  hsun@yzu.edu.cn

Cite this article: 

Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵) Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics 2021 Chin. Phys. B 30 107701

[1] Schmid H 1994 Ferroelectrics 162 317
[2] Eerenstein W, Mathur N and Scott J 2006 Nature 442 759
[3] Ramesh R and Spaldin N 2007 Nat. Mater. 6 21
[4] Qin M H, Lin L, Li L, Jia X T and Liu J M 2015 Chin. Phys. B 24 037509
[5] Zhou L, Wang X, Zhang H M, Shen X D, Dong S and Long Y W 2018 Acta Phys. Sin. 67 157505 (in Chinese)
[6] Snedden A, Hervoches C and Lightfoot P 2003 Phys. Rev. B 67 092192
[7] Pan Q and Chu B J 2020 Chin. Phys. B 29 087501
[8] Li J, Huang Y, Jin H, Rao G and Liang J 2013 J. Am. Ceram. Soc. 96 3920
[9] Zhao H Y, Kimura H, Cheng Z X, Osada M, Wang J L, Wang X L, Dou S X, Liu Y, Yu J D, Matsumoto T, Tohei T, Shibata N and Ikuhara Y 2014 Sci. Rep. 4 5255
[10] Birebaum A Y and Ederer C 2014 Phys. Rev. B 90 214109
[11] Zhai X F, Yun Y, Meng D C, Cui Z Z, Huang H L, Wang J L and Lu Y L 2018 Acta Phys. Sin. 15 157702 (in Chinese)
[12] Sun H, Lu X M, Xu T T, Su J, Jin Y M, Ju C C, Huang F Z and Zhu J S 2012 J. Appl. Phys. 111 124116
[13] Mao X Y, Wang W, Chen X B and Lu Y L 2009 Appl. Phys. Lett. 95 082901
[14] Mao X Y, Sun H, Wang W, Chen X B and Lu Y L 2013 Appl. Phys. Lett. 102 072904
[15] Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M and Sun Y P 2012 Appl. Phys. Lett. 101 122402
[16] Yang J, Yin L, Liu Z, Zhu X, Song W, Dai J, Yang Z and Sun Y 2012 Appl. Phys. Lett. 101 012402
[17] Srinivas A, Suryanarayana S, Kumar G and Mahesh K 1999 J. Phys. Condens. Matter 11 3335
[18] Xiong P, Yang J, Qin Y, Huang W, Tang X, Yin L, Song W, Dai J, Zhu X and Sun Y 2017 Ceram. Int. 43 4405
[19] Wang J, Li L, Peng R, Fu Z, Liu M and Lu Y 2015 J. Am. Ceram. Soc. 98 1528
[20] Wang J, Fu Z, Peng R, Liu M, Sun S, Huang H, Li L, Knize R and Lu Y 2015 Mater. Horiz. 2 232
[21] Lei Z, Liu M, Ge W, Li Z, Knize R and Lu Y 2015 Mater. Lett. 139 348
[22] Wang G P, Sun S J, Huang Y, Wang J L, Peng R R, Fu Z P and Lu Y L 2014 Chin. Sci. Bull. 59 5199
[23] Sun S J, Ling Y H, Peng R R, Liu M, Mao X Y, Chen X B, Knize R J and Lu Y L 2013 RSC Adv. 3 18567
[24] Sun S J, Huang Y, Wang G P, Wang J L, Fu Z P, Peng R R, Knize R J and Lu Y L 2014 Nanoscale 6 13494
[25] Chen X, Xiao J, Yao J, Kang Z, Yang F and Zeng X 2014 Ceram. Inter. 40 6815
[26] Chen X, Xiao J, Xue Y, Zeng X, Yang F and Su P 2014 Ceram. Inter. 40 2635
[27] Sun H, Lu Y X, Xie X, Yao T S, Xu Z R, Wang Y and Chen X B 2019 J. Eur. Ceram. Soc. 39 2103
[28] Lu Y X, Sun H, Wang Z F, Xie X, Yao T S, Wang J L, Qi Y J, Chen X B and Lu Y L 2020 J. Mater. Sci.: Mater. Electron. 31 1034
[29] Shao C, Lu Y, Wang D and Li Y 2012 J. Eur. Ceram. Soc. 32 3781
[30] Kojima S, Imaizumi R, Hamazaki S and Takashige M 1994 Jpn. J. Appl. Phys. 33 5559
[31] Graves P, Hua G, Myhra S and Thompson J 1995 J. Solid State Chem. 114 112
[32] Kojima S, Imaizumi R, Hamazaki S and Takashige M 1994 Jpn. J. Appl. Phys. 33 5559
[33] Graves P R, Hua G, Myhra S and Thompson J G 1995 J. Solid State Chem. 114 112
[34] Wang J, Cheng G, Zhang S, Cheng H and Chen Y 2004 Phys. B 344 368
[35] Mao X, Wang W, Sun H. Lu Y L and Chen X B 2012 Integrated Ferroelectrics 132 16
[36] Huang F, Lu X, Wang Z, Lin W, Kan Y, Bo F, Cai W and Zhu J 2009 Appl. Phys. A 97 699
[37] Mansour A N 1994 Surf. Sci. Spectra 3 231
[38] Yang R X, Lu Y M, Zeng L Z, Zhang L J and Li G N 2020 Acta Phys. Sin. 69 107701 (in Chinese)
[39] Kashinath A, Mukesh N, Meenal S, Nagarajan V and Satishchandra B 2009 Appl. Phys. Lett. 95 203502
[40] Lin Y, Yang Y, Zhuang B, Huang S, Wu L, Huang Z, Zhang F and Du Y 2008 J. Phys. D Appl. Phys. 41 195007
[41] Ti R, Lu X, He J, Huang F, Wu H, Mei F, Zhou M, Li Y, Xu T and Zhu J 2015 J. Mater. Chem. C 3 11868
[42] Lei Z, Chen T, Li W, Liu M, Ge W and Lu Y 2017 Crystals 7 76
[43] Scott J and Dawber M 2000 Appl. Phys. Lett. 76 3801
[44] Yao Y, Song C, Bao P, Su D, Lu X M, Zhu J S and Wang Y N 2004 J. Appl. Phys. 95 3126
[45] Li J, Huang Y P, Rao G H, Liu G Y, Luo J, Chen J R and Liang J K 2010 Appl. Phys. Lett. 96 222903
[46] Liu J, Bai W, Yang J, Xu W, Zhang Y, Lin T, Meng X, Duan C, Tang X and Chu J 2013 J. Appl. Phys. 114 112903
[47] Ahn S, Noguchi Y, Miyayama M and Kudo T 2000 Mater. Res. Bull. 35 825
[48] Kim J, Raghavan C and Kim S 2015 Ceram. Int. 41 1567
[49] Jiang Q Y, Subbarao E C and Cross L E 1994 J. Appl. Phys. 75 7433
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!