CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics |
Hui Sun(孙慧)1,3,†, Jiaying Niu(钮佳颖)1, Haiying Cheng(成海英)2, Yuxi Lu(卢玉溪)1, Zirou Xu(徐紫柔)1, Lei Zhang(张磊)1, and Xiaobing Chen(陈小兵)1 |
1 College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China; 2 School of Sino-German Engineering, Shanghai Technical Institute of Electronics&Information, Shanghai 201411, China; 3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The single-phase multiferroic Bi5Fe1-xNixTi3O15 (BFNT-x, x=0, 0.1, 0.2, 0.3, 0.4, and 0.5) ceramics were synthesized by a sol-gel auto-combustion method, and their microstructures, ferroelectric, magnetic, and dielectric properties were investigated in detail. All samples belong to layer-perovskited Aurivillius phase containing four perovskite units sandwiched between two Bi-O layers. Ni substitution can not only improve ferroelectricity but also enhance the magnetic properties. The BFNT-0.2 sample shows the largest remnant polarization (2Pr ~ 11.6 μC/cm2) and the highest remnant magnetization (2Mr ~ 0.244 emu/g). The enhancement of the magnetic properties may mainly originate from the spin canting of Fe/Ni-O octahedra via Dzyaloshinskii-Moriya (DM) interaction. In order to explore the influence of valance state of magnetic ions on the properties, the x-ray photoelectron spectroscopy was carried out. Furthermore, structural, ferroelectric, and magnetic transitions were also investigated.
|
Received: 02 July 2021
Revised: 31 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
77.80.B-
|
(Phase transitions and Curie point)
|
|
91.60.Pn
|
(Magnetic and electrical properties)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Corresponding Authors:
Hui Sun
E-mail: hsun@yzu.edu.cn
|
Cite this article:
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵) Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics 2021 Chin. Phys. B 30 107701
|
[1] Schmid H 1994 Ferroelectrics 162 317 [2] Eerenstein W, Mathur N and Scott J 2006 Nature 442 759 [3] Ramesh R and Spaldin N 2007 Nat. Mater. 6 21 [4] Qin M H, Lin L, Li L, Jia X T and Liu J M 2015 Chin. Phys. B 24 037509 [5] Zhou L, Wang X, Zhang H M, Shen X D, Dong S and Long Y W 2018 Acta Phys. Sin. 67 157505 (in Chinese) [6] Snedden A, Hervoches C and Lightfoot P 2003 Phys. Rev. B 67 092192 [7] Pan Q and Chu B J 2020 Chin. Phys. B 29 087501 [8] Li J, Huang Y, Jin H, Rao G and Liang J 2013 J. Am. Ceram. Soc. 96 3920 [9] Zhao H Y, Kimura H, Cheng Z X, Osada M, Wang J L, Wang X L, Dou S X, Liu Y, Yu J D, Matsumoto T, Tohei T, Shibata N and Ikuhara Y 2014 Sci. Rep. 4 5255 [10] Birebaum A Y and Ederer C 2014 Phys. Rev. B 90 214109 [11] Zhai X F, Yun Y, Meng D C, Cui Z Z, Huang H L, Wang J L and Lu Y L 2018 Acta Phys. Sin. 15 157702 (in Chinese) [12] Sun H, Lu X M, Xu T T, Su J, Jin Y M, Ju C C, Huang F Z and Zhu J S 2012 J. Appl. Phys. 111 124116 [13] Mao X Y, Wang W, Chen X B and Lu Y L 2009 Appl. Phys. Lett. 95 082901 [14] Mao X Y, Sun H, Wang W, Chen X B and Lu Y L 2013 Appl. Phys. Lett. 102 072904 [15] Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M and Sun Y P 2012 Appl. Phys. Lett. 101 122402 [16] Yang J, Yin L, Liu Z, Zhu X, Song W, Dai J, Yang Z and Sun Y 2012 Appl. Phys. Lett. 101 012402 [17] Srinivas A, Suryanarayana S, Kumar G and Mahesh K 1999 J. Phys. Condens. Matter 11 3335 [18] Xiong P, Yang J, Qin Y, Huang W, Tang X, Yin L, Song W, Dai J, Zhu X and Sun Y 2017 Ceram. Int. 43 4405 [19] Wang J, Li L, Peng R, Fu Z, Liu M and Lu Y 2015 J. Am. Ceram. Soc. 98 1528 [20] Wang J, Fu Z, Peng R, Liu M, Sun S, Huang H, Li L, Knize R and Lu Y 2015 Mater. Horiz. 2 232 [21] Lei Z, Liu M, Ge W, Li Z, Knize R and Lu Y 2015 Mater. Lett. 139 348 [22] Wang G P, Sun S J, Huang Y, Wang J L, Peng R R, Fu Z P and Lu Y L 2014 Chin. Sci. Bull. 59 5199 [23] Sun S J, Ling Y H, Peng R R, Liu M, Mao X Y, Chen X B, Knize R J and Lu Y L 2013 RSC Adv. 3 18567 [24] Sun S J, Huang Y, Wang G P, Wang J L, Fu Z P, Peng R R, Knize R J and Lu Y L 2014 Nanoscale 6 13494 [25] Chen X, Xiao J, Yao J, Kang Z, Yang F and Zeng X 2014 Ceram. Inter. 40 6815 [26] Chen X, Xiao J, Xue Y, Zeng X, Yang F and Su P 2014 Ceram. Inter. 40 2635 [27] Sun H, Lu Y X, Xie X, Yao T S, Xu Z R, Wang Y and Chen X B 2019 J. Eur. Ceram. Soc. 39 2103 [28] Lu Y X, Sun H, Wang Z F, Xie X, Yao T S, Wang J L, Qi Y J, Chen X B and Lu Y L 2020 J. Mater. Sci.: Mater. Electron. 31 1034 [29] Shao C, Lu Y, Wang D and Li Y 2012 J. Eur. Ceram. Soc. 32 3781 [30] Kojima S, Imaizumi R, Hamazaki S and Takashige M 1994 Jpn. J. Appl. Phys. 33 5559 [31] Graves P, Hua G, Myhra S and Thompson J 1995 J. Solid State Chem. 114 112 [32] Kojima S, Imaizumi R, Hamazaki S and Takashige M 1994 Jpn. J. Appl. Phys. 33 5559 [33] Graves P R, Hua G, Myhra S and Thompson J G 1995 J. Solid State Chem. 114 112 [34] Wang J, Cheng G, Zhang S, Cheng H and Chen Y 2004 Phys. B 344 368 [35] Mao X, Wang W, Sun H. Lu Y L and Chen X B 2012 Integrated Ferroelectrics 132 16 [36] Huang F, Lu X, Wang Z, Lin W, Kan Y, Bo F, Cai W and Zhu J 2009 Appl. Phys. A 97 699 [37] Mansour A N 1994 Surf. Sci. Spectra 3 231 [38] Yang R X, Lu Y M, Zeng L Z, Zhang L J and Li G N 2020 Acta Phys. Sin. 69 107701 (in Chinese) [39] Kashinath A, Mukesh N, Meenal S, Nagarajan V and Satishchandra B 2009 Appl. Phys. Lett. 95 203502 [40] Lin Y, Yang Y, Zhuang B, Huang S, Wu L, Huang Z, Zhang F and Du Y 2008 J. Phys. D Appl. Phys. 41 195007 [41] Ti R, Lu X, He J, Huang F, Wu H, Mei F, Zhou M, Li Y, Xu T and Zhu J 2015 J. Mater. Chem. C 3 11868 [42] Lei Z, Chen T, Li W, Liu M, Ge W and Lu Y 2017 Crystals 7 76 [43] Scott J and Dawber M 2000 Appl. Phys. Lett. 76 3801 [44] Yao Y, Song C, Bao P, Su D, Lu X M, Zhu J S and Wang Y N 2004 J. Appl. Phys. 95 3126 [45] Li J, Huang Y P, Rao G H, Liu G Y, Luo J, Chen J R and Liang J K 2010 Appl. Phys. Lett. 96 222903 [46] Liu J, Bai W, Yang J, Xu W, Zhang Y, Lin T, Meng X, Duan C, Tang X and Chu J 2013 J. Appl. Phys. 114 112903 [47] Ahn S, Noguchi Y, Miyayama M and Kudo T 2000 Mater. Res. Bull. 35 825 [48] Kim J, Raghavan C and Kim S 2015 Ceram. Int. 41 1567 [49] Jiang Q Y, Subbarao E C and Cross L E 1994 J. Appl. Phys. 75 7433 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|