Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡)1, Zhaohua Yang(杨钊华)1,2, Shoukuan Zhao(赵寿宽)1,2, Haisheng Yan(严海生)1,2, Ziting Wang(王子婷)1,2, Xiaohui Song(宋小会)1, Ye Tian(田野)1, and Shiping Zhao(赵士平)1,2,3,4,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Chinese Academy of Sciences Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Superconducting transmon qubits are the leading platform in solid-state quantum computing and quantum simulation applications. In this work, we develop a fabrication process for the transmon multiqubit device with a niobium base layer, shadow-evaporated Josephson junctions, and airbridges across the qubit control lines to suppress crosstalk. Our results show that these multiqubit devices have well-characterized readout resonators, and that the energy relaxation and Ramsey (spin-echo) dephasing times are up to ~ 40 μs and 14 (47) μs, respectively. We perform single-qubit gate operations that demonstrate a maximum gate fidelity of 99.97%. In addition, two-qubit vacuum Rabi oscillations are measured to evaluate the coupling strength between qubits, and the crosstalk among qubits is found to be less than 1% with the fabricated airbridges. Further improvements in qubit coherence performance using this fabrication process are also discussed.
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0300601), the National Natural Science Foundation of China (Grant Nos. 11934018 and 11874063), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2018B030326001).
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平) Fabrication and characterization of superconducting multiqubit device with niobium base layer 2021 Chin. Phys. B 30 100304
[1] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L and Martinis J M 2019 Nature574 505 [2] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev.6 021318 [3] Devoret M H and Schoelkopf R J 2013 Science339 1169 [4] Wendin G and Shumeiko V S 2006 Handbook of Theoretical and Computational Nanotechnology (Rieth M and Schommers W, Ed.) (California: American Scientific Publishers) [5] Clarke J and Wilhelm F K 2008 Nature453 1031 [6] Makhlin Y, Schon G and Shnirman A 2001 Rev. Mod. Phys.73 357 [7] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys.86 153 [8] Cirac J I and Zoller P 2012 Nat. Phys.8 264 [9] Blais A, Huang R, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A69 062320 [10] Koch J, Yu T, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A76 042319 [11] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B27 027401 [12] Josephine B C, Michael R V, Antonio D C, Martin S, Gao J, David W A, Jerry M C, Jay M G, Mary B R, George A K, Matthias S and David P P 2011 Appl. Phys. Lett.103 012602 [13] Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim D K, Miloshi X, Rosenberg D, Sevi A, Yoder J L, Dauler E and Oliver W D 2018 Appl. Phys. Lett.112 062601 [14] Liu Q, Xue G M, Tan X S, Yu H F and Yu Y 2017 Chin. Phys. B26 058402 [15] Foxen B 2018 Quantum. Sci. Technol.3 014005 [16] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, Tian Ye and Zhao S P 2019 Chin. Phys. B28 110303 [17] Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Yu, Chiar B, Dunsworth A, Jeffrey E, Mutus J Y, Malley P J J, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Cleland A N and Martinis J M 2014 Appl. Phys. Lett.104 052602 [18] Jin Z C, Wu H T, Yu H F and Yu Y 2018 Chin. Phys. B27 100310 [19] Ponchak G E, Papapolymerou J and Tentzeris M M 2005 IEEE Trans. Microwave Theory Techniq.53 713 [20] Liaw H J and Merkelo H 1997 IEEE Circ. Dev. Mag.13 22 [21] Schuster C and Fichtner W 2001 IEEE Trans. Electromagn. Compat.43 416 [22] Megrant A, Neill C, Barends R, Chiaro B, Chen Yu, Feigl L, Kelly J, Lucero E, Mariantoni M, Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrm C J, Martinis J M and Cleland A N 2012 Appl. Phys. Lett.100 113510 [23] Su F F, Yang Z H, Tian Y and Zhao S P Chinese Invention Patent 2020110193710.0 [2021-04-15] (in Chinese) [24] Airbridges are fabricated on sample Ⅲ, which does not show difference compared to samples I and Ⅱ in the coherence time measurements. [25] Suri B 2015 Transmon qubits coupled to superconducting lumped element resonators (University of California, Santa Barbara) [26] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Nat. Phys.7 565 [27] Mao B 2010 Coherent Manipulation of Multi-Partite Quantum States in a Qubit-TLS System via Landau-Zener Transition (Ph.D Dissertation) (Lawrence: University of Kansas) [28] Chow J M, Gambetta J M, Tornberg L, Koch J, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett.102 090502 [29] Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett.106 180504 [30] Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Science313 1423 [31] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature449 443 [32] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. Lett.101 080502 [33] Place P M, Rodgers V H, Mundada P, Smitham M, Fitzpatrick M, Leng Z Q, Premkumar A, Bryon J, Sussman S, Cheng G M, Madhavan T, Babla H K, Jack B, Gyenis A, Yao N, Cava R J and Houck A A 2020 arXiv:2003.03307v1 [quant-ph] [34] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J and Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1 [35] Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero Erik, Neeley M, Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508 [36] Blok M S, Ramasesh V V, Schuster T, Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N and Siddiqi I 2020 arXiv:2003.03307v1 [quant-ph] [37] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J and Devoret M H 2012 Appl. Phys. Lett.100 192601 [38] Sage J M, Bolkhovsky V, Oliver W D, Turek B and Welander P B 2011 J. Appl. Phys.109 063915 [39] Bilmes A, Neumann A K, Volosheniuk S, Ustinov A V and Lisenfeld J 2021 arXiv:2101.01453v2 [quant-ph]
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.