Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
TOPICAL REVIEW—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications |
Fang-Yu Yue(越方禹)1, Su-Yu Ma(马骕驭)1, Jin Hong(洪进)1, Ping-Xiong Yang(杨平雄)1, Cheng-Bin Jing(敬承斌)1, Ye Chen(陈晔)1, Jun-Hao Chu(褚君浩)1,2 |
1 Key Laboratory of Polar Materials and Devices(MOE), Department of Optoelectronics, School of Information Science Technology, East China Normal University, Shanghai 200241, China; 2 National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
|
|
Abstract Narrow-gap Hg1-xCdxTe material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x≈ 0.3 are reviewed, including the defects and defect levels of intrinsic VHg and the extrinsic amphoteric arsenic (As) dopants, which can act as shallow/deep donors and acceptors. The influence of the defects on the determination of band-edge electronic structure is discussed when absorption or photoluminescence spectra are considered. The inconsistency between these two optical techniques is demonstrated and analyzed by taking into account the Fermi level position as a function of composition, doping level, conductivity type, and temperature. The defect level and its evolution, especially in As-doped HgCdTe, are presented. Our results provide a systematic understanding of the mechanisms and help for optimizing annealing conditions towards p-type As-activation, and eventually for fabricating high performance mid-infrared detectors.
|
Received: 17 October 2018
Revised: 14 November 2018
Accepted manuscript online:
|
PACS:
|
71.55.-i
|
(Impurity and defect levels)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
61.72.Cc
|
(Kinetics of defect formation and annealing)
|
|
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 61790583, 61874043, 61874045, and 61775060) and the National Key Research and Development Program, China (Grant No. 2016YFB0501604). |
Corresponding Authors:
Fang-Yu Yue
E-mail: fyyue@ee.ecnu.edu.cn
|
Cite this article:
Fang-Yu Yue(越方禹), Su-Yu Ma(马骕驭), Jin Hong(洪进), Ping-Xiong Yang(杨平雄), Cheng-Bin Jing(敬承斌), Ye Chen(陈晔), Jun-Hao Chu(褚君浩) Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications 2019 Chin. Phys. B 28 017104
|
[1] |
Martyniuk P, Antoszewski J, Martyniuk M, Faraone L and Rogalski A 2014 Appl. Phys. Rev. 1 041102
|
[2] |
Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303
|
[3] |
Li Q, He J L, Hu W D, Chen L, Chen X S and Lu W 2018 IEEE T. Electron. Dev. 65 572
|
[4] |
Tomm J W 1994 Curr. Top. Cryst. Growth Res. 1 245
|
[5] |
Berding M A, Sher A, Schilfgaarde M V, Chen A C and Arias J 1998 J. Electron. Mater. 27 605
|
[6] |
Hu W D, Liang J, Yue F Y, Chen X S and Lu W 2016 J. Infrared Millim. Waves 35 25
|
[7] |
Wu J, Xu F F, Wu Y, Chen L, Yu M F and He L 2005 J. Infrared Millim. Waves 24 81
|
[8] |
Duan H, Chen X S, Huang Y and Lu W 2007 Solid State Commun. 143 471
|
[9] |
Yue F Y, Chu J H, Wu J, Hu Z G, Li Y W and Yang P X 2008 Appl. Phys. Lett. 92 121916
|
[10] |
Shao J, Yue F Y, Lü X, Lu W, Huang W, Li Z F, Guo S L and Chu J H 2006 Appl. Phys. Lett. 89 182121
|
[11] |
Yue F Y, Wu J and Chu J H 2008 Appl. Phys. Lett. 93 131909
|
[12] |
Chu J H, Mi Z Y and Tang D Y 1991 Infrared Phys. 32 195
|
[13] |
Chu J H, Xu S C and Tang D Y 1983 Appl. Phys. Lett. 43 1064; Chu J H, Sher A 2007 Springer-Verlag
|
[14] |
Hansen G L, Schmidt J L and Casselman T N 1982 J. Appl. Phys. 53 7099
|
[15] |
Shao J, Lu W, Lv X, Yue F Y, Li Z F, Guo S L and Chu J H 2006 Rev. Sci. Instrum. 77 063104
|
[16] |
Cui H Y, Zeng J D, Tang N Y and Tang Z 2013 Opt. Quant. Electron. 45 629
|
[17] |
Qiu W, Hu W D, Chen L, Lin C, Cheng X, Chen X S and Lu W 2015 IEEE T. Electron. Dev. 62 1926
|
[18] |
Sun L Z, Chen X S, Sun Y L, Zhou X H, Quan Z J, Duan H and Lu W 2005 Phys. Rev. B 71 192303
|
[19] |
Yue F Y, Chen L, Li Y W, Sun L, Yang P X and Chu J H 2012 Chin. Phys. B 21 017804
|
[20] |
Yue F Y, Shao J, Lü X, Huang W, Chu J H, Wu J, Lin X C and He L 2006 Appl. Phys. Lett. 89 021912
|
[21] |
Yue F Y, Shao J, Wei Y F, Lv X, Huang W, Yang J R and Chu J H 2007 Acta Phys. Sin. 56 2878 (in Chinese)
|
[22] |
Chu J H, Mi Z Y and Tang D Y 1992 J. Appl. Phys. 71 3955
|
[23] |
Chu J H, Li B, Liu K and Tang D Y 1994 J. Appl. Phys. 75 1234
|
[24] |
Yue F Y, Chen L, Li Y W, Hu Z G, Sun L, Yang P X and Chu J H 2010 Chin. Phys. B 19 117106
|
[25] |
Yue F Y, Chen L, Wu J, Hu Z G, Li Y W, Yang P X and Chu J H 2009 Chin. Phys. Lett. 26 047804
|
[26] |
Hu W D, Chen X S, Ye Z H, Chen Y G, Yin F, Zhang B and Lu W 2012 Appl. Phys. Lett. 101 181108
|
[27] |
Hu W D, Ye Z H, Liao L, Chen H L, Chen L, Ding R J, He L, Chen X S and Lu W 2014 Opt. Lett. 39 5184
|
[28] |
Li Y T, Hu W D, Ye Z H, Chen Y Y, Chen X S and Lu W 2017 Opt. Lett. 42 1325
|
[29] |
Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L and Lu W 2013 IEEE J. Sel. Top. Quant. Electron. 19 4100107
|
[30] |
Boieriu P, Chen Y and Nathan V 2002 J. Electron. Mater. 31 694
|
[31] |
Berding M A, van Schilfgaarde M and Sher A 1994 Phys. Rev. B 50 1519
|
[32] |
Sun L Z, Chen X S, Zhao J J, Wang J B, Zhou Y C and Lu W 2007 Phys. Rev. B 76 045219
|
[33] |
Vydyanath H R and Hiner C H 1989 J. Appl. Phys. 65 3080
|
[34] |
Edwall D, Piquette E, Ellsworth J, Arias J, Swartz C H, Bai L, Tompkins R P, Giles N C, Myers T H and Berding M 2004 J. Electron. Mater. 33 752
|
[35] |
Shi X H, Rujirawat S, Ashokan R, Grein C H and Sivananthan S 1998 Appl. Phys. Lett. 73 638
|
[36] |
Wang H, Hong J, Yue F Y, Jing C B and Chu J H 2017 Infrared Phys. Techn. 82 1
|
[37] |
Shao J, Lu W, Yue F Y, Lv X, Huang W, Li Z F, Guo S L and Chu J H 2007 Rev. Sci. Instrum. 78 013111
|
[38] |
Selamet Y, Grein C H, Lee T S and Sivananthan S 2001 J. Vac. Sci. Technol. B 19 1488
|
[39] |
Kenworthy I, Capper P, Jones C L, Gosney J J G and Coates W G 1990 Semicond. Sci. Technol. 5 854
|
[40] |
Grein C H, Garl, J W, Sivananthan S, Wijewarnasuriya P S, Aqariden F and Fuchs M 1999 J. Electron. Mater. 28 789
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|