Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017104    DOI: 10.1088/1674-1056/28/1/017104
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications

Fang-Yu Yue(越方禹)1, Su-Yu Ma(马骕驭)1, Jin Hong(洪进)1, Ping-Xiong Yang(杨平雄)1, Cheng-Bin Jing(敬承斌)1, Ye Chen(陈晔)1, Jun-Hao Chu(褚君浩)1,2
1 Key Laboratory of Polar Materials and Devices(MOE), Department of Optoelectronics, School of Information Science Technology, East China Normal University, Shanghai 200241, China;
2 National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  Narrow-gap Hg1-xCdxTe material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x≈ 0.3 are reviewed, including the defects and defect levels of intrinsic VHg and the extrinsic amphoteric arsenic (As) dopants, which can act as shallow/deep donors and acceptors. The influence of the defects on the determination of band-edge electronic structure is discussed when absorption or photoluminescence spectra are considered. The inconsistency between these two optical techniques is demonstrated and analyzed by taking into account the Fermi level position as a function of composition, doping level, conductivity type, and temperature. The defect level and its evolution, especially in As-doped HgCdTe, are presented. Our results provide a systematic understanding of the mechanisms and help for optimizing annealing conditions towards p-type As-activation, and eventually for fabricating high performance mid-infrared detectors.
Keywords:  HgCdTe      defects      annealing procedures      optical characterization  
Received:  17 October 2018      Revised:  14 November 2018      Accepted manuscript online: 
PACS:  71.55.-i (Impurity and defect levels)  
  71.55.Gs (II-VI semiconductors)  
  78.55.-m (Photoluminescence, properties and materials)  
  61.72.Cc (Kinetics of defect formation and annealing)  
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 61790583, 61874043, 61874045, and 61775060) and the National Key Research and Development Program, China (Grant No. 2016YFB0501604).
Corresponding Authors:  Fang-Yu Yue     E-mail:  fyyue@ee.ecnu.edu.cn

Cite this article: 

Fang-Yu Yue(越方禹), Su-Yu Ma(马骕驭), Jin Hong(洪进), Ping-Xiong Yang(杨平雄), Cheng-Bin Jing(敬承斌), Ye Chen(陈晔), Jun-Hao Chu(褚君浩) Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications 2019 Chin. Phys. B 28 017104

[1] Martyniuk P, Antoszewski J, Martyniuk M, Faraone L and Rogalski A 2014 Appl. Phys. Rev. 1 041102
[2] Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303
[3] Li Q, He J L, Hu W D, Chen L, Chen X S and Lu W 2018 IEEE T. Electron. Dev. 65 572
[4] Tomm J W 1994 Curr. Top. Cryst. Growth Res. 1 245
[5] Berding M A, Sher A, Schilfgaarde M V, Chen A C and Arias J 1998 J. Electron. Mater. 27 605
[6] Hu W D, Liang J, Yue F Y, Chen X S and Lu W 2016 J. Infrared Millim. Waves 35 25
[7] Wu J, Xu F F, Wu Y, Chen L, Yu M F and He L 2005 J. Infrared Millim. Waves 24 81
[8] Duan H, Chen X S, Huang Y and Lu W 2007 Solid State Commun. 143 471
[9] Yue F Y, Chu J H, Wu J, Hu Z G, Li Y W and Yang P X 2008 Appl. Phys. Lett. 92 121916
[10] Shao J, Yue F Y, Lü X, Lu W, Huang W, Li Z F, Guo S L and Chu J H 2006 Appl. Phys. Lett. 89 182121
[11] Yue F Y, Wu J and Chu J H 2008 Appl. Phys. Lett. 93 131909
[12] Chu J H, Mi Z Y and Tang D Y 1991 Infrared Phys. 32 195
[13] Chu J H, Xu S C and Tang D Y 1983 Appl. Phys. Lett. 43 1064; Chu J H, Sher A 2007 Springer-Verlag
[14] Hansen G L, Schmidt J L and Casselman T N 1982 J. Appl. Phys. 53 7099
[15] Shao J, Lu W, Lv X, Yue F Y, Li Z F, Guo S L and Chu J H 2006 Rev. Sci. Instrum. 77 063104
[16] Cui H Y, Zeng J D, Tang N Y and Tang Z 2013 Opt. Quant. Electron. 45 629
[17] Qiu W, Hu W D, Chen L, Lin C, Cheng X, Chen X S and Lu W 2015 IEEE T. Electron. Dev. 62 1926
[18] Sun L Z, Chen X S, Sun Y L, Zhou X H, Quan Z J, Duan H and Lu W 2005 Phys. Rev. B 71 192303
[19] Yue F Y, Chen L, Li Y W, Sun L, Yang P X and Chu J H 2012 Chin. Phys. B 21 017804
[20] Yue F Y, Shao J, Lü X, Huang W, Chu J H, Wu J, Lin X C and He L 2006 Appl. Phys. Lett. 89 021912
[21] Yue F Y, Shao J, Wei Y F, Lv X, Huang W, Yang J R and Chu J H 2007 Acta Phys. Sin. 56 2878 (in Chinese)
[22] Chu J H, Mi Z Y and Tang D Y 1992 J. Appl. Phys. 71 3955
[23] Chu J H, Li B, Liu K and Tang D Y 1994 J. Appl. Phys. 75 1234
[24] Yue F Y, Chen L, Li Y W, Hu Z G, Sun L, Yang P X and Chu J H 2010 Chin. Phys. B 19 117106
[25] Yue F Y, Chen L, Wu J, Hu Z G, Li Y W, Yang P X and Chu J H 2009 Chin. Phys. Lett. 26 047804
[26] Hu W D, Chen X S, Ye Z H, Chen Y G, Yin F, Zhang B and Lu W 2012 Appl. Phys. Lett. 101 181108
[27] Hu W D, Ye Z H, Liao L, Chen H L, Chen L, Ding R J, He L, Chen X S and Lu W 2014 Opt. Lett. 39 5184
[28] Li Y T, Hu W D, Ye Z H, Chen Y Y, Chen X S and Lu W 2017 Opt. Lett. 42 1325
[29] Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L and Lu W 2013 IEEE J. Sel. Top. Quant. Electron. 19 4100107
[30] Boieriu P, Chen Y and Nathan V 2002 J. Electron. Mater. 31 694
[31] Berding M A, van Schilfgaarde M and Sher A 1994 Phys. Rev. B 50 1519
[32] Sun L Z, Chen X S, Zhao J J, Wang J B, Zhou Y C and Lu W 2007 Phys. Rev. B 76 045219
[33] Vydyanath H R and Hiner C H 1989 J. Appl. Phys. 65 3080
[34] Edwall D, Piquette E, Ellsworth J, Arias J, Swartz C H, Bai L, Tompkins R P, Giles N C, Myers T H and Berding M 2004 J. Electron. Mater. 33 752
[35] Shi X H, Rujirawat S, Ashokan R, Grein C H and Sivananthan S 1998 Appl. Phys. Lett. 73 638
[36] Wang H, Hong J, Yue F Y, Jing C B and Chu J H 2017 Infrared Phys. Techn. 82 1
[37] Shao J, Lu W, Yue F Y, Lv X, Huang W, Li Z F, Guo S L and Chu J H 2007 Rev. Sci. Instrum. 78 013111
[38] Selamet Y, Grein C H, Lee T S and Sivananthan S 2001 J. Vac. Sci. Technol. B 19 1488
[39] Kenworthy I, Capper P, Jones C L, Gosney J J G and Coates W G 1990 Semicond. Sci. Technol. 5 854
[40] Grein C H, Garl, J W, Sivananthan S, Wijewarnasuriya P S, Aqariden F and Fuchs M 1999 J. Electron. Mater. 28 789
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[5] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[6] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[7] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[8] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[9] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[10] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[11] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[12] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[13] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[14] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!