Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密)1,2 and Li-Yan Tang(唐丽艳)1,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract The pursuit of a systematic frequency uncertainty beyond 10-18 clock has triggered a multitude of investigations on the multipolar and higher-order lattice light shifts. The Cd atom has been proposed as a new candidate for the development of a lattice clock because of its smaller blackbody radiation shift at room temperature. Here, we apply an improved combined method of the Dirac-Fock plus core polarization and relativistic configuration interaction methods to calculate the dynamic multipolar polarizabilities of the Cd clock states. The effects of the high-order core-polarization potentials on the energies, reduced matrix elements, and multipolar polarizabilities have been evaluated systematically. The detailed comparison with available literature demonstrates that taking into account of the high-order core-polarization potentials is a simple and effective approach to improve the results of atomic properties for heavy atoms.
(Auxiliary and recording instruments; clocks and frequency standards)
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304402), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants No. XDB21030300), and the Hubei Province Science Fund for Distinguished Young Scholars, China (Grant No. 2019CFA058).
Mi Zhou(周密) and Li-Yan Tang(唐丽艳) Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels 2021 Chin. Phys. B 30 083102
[1] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett.113 210801 [2] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett.113 210802 [3] Safronova M S, Porsev S G, Sanner C and Ye J 2018 Phys. Rev. Lett.120 173001 [4] Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F and Calonico D 2017 J. Phys. Conf. Ser.841 012015 [5] Yamanaka K, Ohmae N, Ushijima I, Takamoto M and Katori H 2015 Phys. Rev. Lett.114 230801 [6] Pihan-Le Bars H, Guerlin C, Lasseri R D, Ebran J P, Bailey Q G, Bize S, Khan E and Wolf P 2017 Phys. Rev. D95 075026 [7] Shaniv R, Ozeri R, Safronova M S, Porsev S G, Dzuba V A, Flambaum V V and Hffner H 2018 Phys. Rev. Lett.120 103202 [8] Kozlov M G, Safronova M S, Crespo Lpez-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys.90 45005 [9] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon.13 714 [10] McGrew W F, Zhang X, Fasano R J, Schffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature564 87 [11] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett.123 033201 [12] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett.116 063001 [13] Kaneda Y, Yarborough J M, Merzlyak Y, Yamaguchi A, Hayashida K, Ohmae N and Katori H 2016 Opt. Lett.41 705 [14] Brickman K A, Chang M S, Acton M, Chew A, Matsukevich D, Haljan P C, Bagnato V S and Monroe C 2007 Phys. Rev. A76 043411 [15] Dzuba V A and Derevianko A 2019 J. Phys. B: At. Mol. Opt. Phys.52 215005 [16] Porsev S G and Derevianko A 2006 Phys. Rev. A74 020502 [17] Yamaguchi A, Safronova M S, Gibble K and Katori H 2019 Phys. Rev. Lett.123 113201 [18] Porsev S G and Safronova M S 2020 Phys. Rev. A102 012811 [19] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A87 042517 [20] Wu X M, Li C B, Tang Y B and Shi T Y 2016 Chin. Phys. B25 093101 [21] Wu F F, Tang Y B, Shi T Y and Tang L Y 2019 Phys. Rev. A100 042514 [22] Wu F F, Tang Y B, Shi T Y and Tang L Y 2020 Phys. Rev. A101 053414 [23] Mitroy J and Norcross D W 1988 Phys. Rev. A37 3755 [24] Tang Y B, Li C B and Qiao H X 2014 Chin. Phys. B23 063101 [25] Johnson W R, Kolb D and Huang K N 1983 At. Data Nucl. Data Tables28 333 [26] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys.43 202001 [27] Mitroy J and Bromley M W 2003 Phys. Rev. A68 052714 [28] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2019 NIST Atomic Spectra Database version.5.7.1 [29] Mitroy J and Bromley M W J 2003 Phys. Rev. A68 052714 [30] Bottcher C and Alexander D 1974 Proc. R. Soc. Lon. A.340 187 [31] Zhang Y H, Tang L Y, Zhang X Z and Shi T Y 2015 Phys. Rev. A92 012515 [32] Ye A P and Wang G F 2008 Phys. Rev. A78 014502 [33] Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A69 021403 [34] Goebel D and Hohm U 1995 Phys. Rev. A52 3691
[1]
Dynamic polarizabilities of the clock states of Al+ Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2022, 31(8): 083102.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.