|
|
Tune-out wavelengths for the alkaline-metal atoms |
Wei-Wei Yu(于伟威)1, Rong-Mei Yu(于荣梅)2, Yong-Jun Cheng(程勇军)3 and Ya-Jun Zhou(周雅君)3 |
1. School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
2. College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061;
3. Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China |
|
|
Abstract An approximation formula is developed to determine the tune-out wavelengths for the ground states of the alkaline-metal atoms lithium, sodium and cesium from the existing relativistic reduced matrix elements and experimental energies. The first longest tune-out wavelengths for Li, Na, and Cs are 670.971 nm, 589.557 nm, and 880.237 nm, respectively. This is in good agreement with the previous high precise results of 670.971626 nm, 589.5565 nm, and 880.25 nm from the relativistic all-order many-body perturbation theory (RMBPT) calculation [Phys. Rev. A 84 043401 (2011)].
|
Received: 09 September 2015
Revised: 07 December 2015
Accepted manuscript online:
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
37.10.De
|
(Atom cooling methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304063 and 11174066) and the Youth Foundation of Liaoning Normal University, China (Grant No. LS2014L002). |
Corresponding Authors:
Yong-Jun Cheng
E-mail: yongjun.cheng@hit.edu.cn
|
Cite this article:
Wei-Wei Yu(于伟威), Rong-Mei Yu(于荣梅), Yong-Jun Cheng(程勇军) and Ya-Jun Zhou(周雅君) Tune-out wavelengths for the alkaline-metal atoms 2016 Chin. Phys. B 25 023101
|
[1] |
Truscott A G, Strecker K E, McAlexander W I, Partridge G B and Hulet R G 2001 Science 291 2570
|
[2] |
Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett. 87 080403
|
[3] |
Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A and Inguscio M 2001 Science 294 1320
|
[4] |
Ivanov V V, Khramov A, Hansen A H, Dowd W H, Muenchow F, Jamison A O and Gupta S 2011 Phys. Rev. Lett. 106 153201
|
[5] |
Jia Y F, Guo H M, Qin J H, Chen Z Y and Feng S P 2013 Chin. Phys. B 22 090308
|
[6] |
Papp S B and Wieman C E 2006 Phys. Rev. Lett. 97 180404
|
[7] |
Ospelkaus C, Ospelkaus S, Humbert L, Ernst P, Sengstock K, and Bongs K 2006 Phys. Rev. Lett. 97 120402
|
[8] |
Ospelkaus C and Ospelkaus S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 203001
|
[9] |
Ni K K, Ospelkaus S, Miranda M H G de, Peér A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
|
[10] |
Voigt A C, Taglieber M, Costa L, Aoki T, Wieser W, Hänsch T W and Dieckmann K 2009 Phys. Rev. Lett. 102 020405
|
[11] |
LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612
|
[12] |
Arora B, Safronova M S and Clark C W 2011 Phys. Rev. A 84 043401
|
[13] |
Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V and Safronova M S 2012 Phys. Rev. Lett. 109 243003
|
[14] |
Holmgren W F, Trubko R, Hromada I and Cronin A D 2012 Phys. Rev. Lett. 109 243004
|
[15] |
Trubko R, Greenberg J, Germaine M T S, Gregoire M D, Holmgren W F, Hromada I and Cronin A D 2015 Phys. Rev. Lett. 114 140404
|
[16] |
Mitroy J, Griffin D C, Norcross D W and Pindzola M S 1988 Phys. Rev. A 38 3339
|
[17] |
Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 052714
|
[18] |
Mitroy J and Safronova M S 2009 Phys. Rev. A 79 012513
|
[19] |
Mitroy J, Zhang J Y, Bromley M W J and Rollin K G 2009 Eur. Phys. J. D 53 15
|
[20] |
Jiang J, Tang L Y and Mitroy J 2013 Phys. Rev. A 87 032518
|
[21] |
Cheng Y J, Jiang J and Mitroy J 2013 Phys. Rev. A 88 022511
|
[22] |
Yu W W, Yu R M and Cheng Y J 2015 Chin. Phys. Lett. 32 123102
|
[23] |
Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 035201
|
[24] |
Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2012 NIST Atomic Spectra Database (Version 5.00) http://physics.nist.gov/asd
|
[25] |
Safronova M S, Johnson W R and Derevianko A 1999 Phys. Rev. A 60 4476
|
[26] |
Kaur K, Kaur J and Arora B 2014 Phys. Rev. B 90 245405
|
[27] |
Tang Y B, Li C B and Qiao H X 2014 Chin. Phys. B 23 063101
|
[28] |
Marinescu M, Sadeghpour H R and Dalgarno A 1994 Phys. Rev. A 49 982
|
[29] |
Miffre A, Jacquest M, Buchner M, Trenec G and Vigue J 2006 Eur. Phys. J. D 38 353
|
[30] |
Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D and Pritchard D E 1995 Phys. Rev. A 51 3883
|
[31] |
Hall W D and Zorn J C 1974 Phys. Rev. A 10 1141
|
[32] |
Molof R W, Schwartz H L, Miller T M and Bederson B 1974 Phys. Rev. A 10 1131
|
[33] |
Sahoo B K and Arora B 2013 Phys. Rev. A 87 023402
|
[34] |
Oblak D, Petrov P G, Alzar C L G, et al. 2005 Phys. Rev. A 71 043807
|
[35] |
Rosenbusch P, Ghezali S, Dzuba V A, Flambaum V V, Beloy K and Derevianko A 2009 Phys. Rev. A 79 013404
|
[36] |
Vasilyev A A, Savukov I M, Safronova M S and Berry H G 2002 Phys. Rev. A 66 020101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|