Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 023101    DOI: 10.1088/1674-1056/25/2/023101

Tune-out wavelengths for the alkaline-metal atoms

Wei-Wei Yu(于伟威)1, Rong-Mei Yu(于荣梅)2, Yong-Jun Cheng(程勇军)3 and Ya-Jun Zhou(周雅君)3
1. School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
2. College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061;
3. Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China

An approximation formula is developed to determine the tune-out wavelengths for the ground states of the alkaline-metal atoms lithium, sodium and cesium from the existing relativistic reduced matrix elements and experimental energies. The first longest tune-out wavelengths for Li, Na, and Cs are 670.971 nm, 589.557 nm, and 880.237 nm, respectively. This is in good agreement with the previous high precise results of 670.971626 nm, 589.5565 nm, and 880.25 nm from the relativistic all-order many-body perturbation theory (RMBPT) calculation [Phys. Rev. A 84 043401 (2011)].

Keywords:  polarizability      tune-out wavelength      alkaline-metal atom  
Received:  09 September 2015      Revised:  07 December 2015      Accepted manuscript online: 
PACS: (High-precision calculations for few-electron (or few-body) atomic systems)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  37.10.De (Atom cooling methods)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304063 and 11174066) and the Youth Foundation of Liaoning Normal University, China (Grant No. LS2014L002).

Corresponding Authors:  Yong-Jun Cheng     E-mail:

Cite this article: 

Wei-Wei Yu(于伟威), Rong-Mei Yu(于荣梅), Yong-Jun Cheng(程勇军) and Ya-Jun Zhou(周雅君) Tune-out wavelengths for the alkaline-metal atoms 2016 Chin. Phys. B 25 023101

[1] Truscott A G, Strecker K E, McAlexander W I, Partridge G B and Hulet R G 2001 Science 291 2570
[2] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett. 87 080403
[3] Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A and Inguscio M 2001 Science 294 1320
[4] Ivanov V V, Khramov A, Hansen A H, Dowd W H, Muenchow F, Jamison A O and Gupta S 2011 Phys. Rev. Lett. 106 153201
[5] Jia Y F, Guo H M, Qin J H, Chen Z Y and Feng S P 2013 Chin. Phys. B 22 090308
[6] Papp S B and Wieman C E 2006 Phys. Rev. Lett. 97 180404
[7] Ospelkaus C, Ospelkaus S, Humbert L, Ernst P, Sengstock K, and Bongs K 2006 Phys. Rev. Lett. 97 120402
[8] Ospelkaus C and Ospelkaus S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 203001
[9] Ni K K, Ospelkaus S, Miranda M H G de, Peér A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[10] Voigt A C, Taglieber M, Costa L, Aoki T, Wieser W, Hänsch T W and Dieckmann K 2009 Phys. Rev. Lett. 102 020405
[11] LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612
[12] Arora B, Safronova M S and Clark C W 2011 Phys. Rev. A 84 043401
[13] Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V and Safronova M S 2012 Phys. Rev. Lett. 109 243003
[14] Holmgren W F, Trubko R, Hromada I and Cronin A D 2012 Phys. Rev. Lett. 109 243004
[15] Trubko R, Greenberg J, Germaine M T S, Gregoire M D, Holmgren W F, Hromada I and Cronin A D 2015 Phys. Rev. Lett. 114 140404
[16] Mitroy J, Griffin D C, Norcross D W and Pindzola M S 1988 Phys. Rev. A 38 3339
[17] Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 052714
[18] Mitroy J and Safronova M S 2009 Phys. Rev. A 79 012513
[19] Mitroy J, Zhang J Y, Bromley M W J and Rollin K G 2009 Eur. Phys. J. D 53 15
[20] Jiang J, Tang L Y and Mitroy J 2013 Phys. Rev. A 87 032518
[21] Cheng Y J, Jiang J and Mitroy J 2013 Phys. Rev. A 88 022511
[22] Yu W W, Yu R M and Cheng Y J 2015 Chin. Phys. Lett. 32 123102
[23] Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 035201
[24] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2012 NIST Atomic Spectra Database (Version 5.00)
[25] Safronova M S, Johnson W R and Derevianko A 1999 Phys. Rev. A 60 4476
[26] Kaur K, Kaur J and Arora B 2014 Phys. Rev. B 90 245405
[27] Tang Y B, Li C B and Qiao H X 2014 Chin. Phys. B 23 063101
[28] Marinescu M, Sadeghpour H R and Dalgarno A 1994 Phys. Rev. A 49 982
[29] Miffre A, Jacquest M, Buchner M, Trenec G and Vigue J 2006 Eur. Phys. J. D 38 353
[30] Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D and Pritchard D E 1995 Phys. Rev. A 51 3883
[31] Hall W D and Zorn J C 1974 Phys. Rev. A 10 1141
[32] Molof R W, Schwartz H L, Miller T M and Bederson B 1974 Phys. Rev. A 10 1131
[33] Sahoo B K and Arora B 2013 Phys. Rev. A 87 023402
[34] Oblak D, Petrov P G, Alzar C L G, et al. 2005 Phys. Rev. A 71 043807
[35] Rosenbusch P, Ghezali S, Dzuba V A, Flambaum V V, Beloy K and Derevianko A 2009 Phys. Rev. A 79 013404
[36] Vasilyev A A, Savukov I M, Safronova M S and Berry H G 2002 Phys. Rev. A 66 020101
[1] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[2] Dynamic polarizabilities of the clock states of Al+
Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2022, 31(8): 083102.
[3] Influences of adsorptions of some inorganic molecules on electronic, optical, and thermodynamic properties of Mg12O12 nanocage: A computational approach
Asghar Mohammadi Hesari, Hamid Reza Shamlouei. Chin. Phys. B, 2018, 27(8): 084210.
[4] Influence of alkali metal superoxides on structure, electronic, and optical properties of Be12O12 nanocage: Density functional theory study
Ali Raoof Toosi, Hamid Reza Shamlouei, Asghar Mohammadi Hesari. Chin. Phys. B, 2016, 25(9): 094220.
[5] Calculations of the dynamic dipole polarizabilities for the Li+ ion
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(10): 103101.
[6] Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock
Liu Pei-Liang (刘培亮), Huang Yao (黄垚), Bian Wu (边武), Shao Hu (邵虎), Qian Yuan (钱源), Guan Hua (管桦), Tang Li-Yan (唐丽艳), Gao Ke-Lin (高克林). Chin. Phys. B, 2015, 24(3): 039501.
[7] Static electric dipole polarizability of lithium atom in Debye plasmas
Ning Li-Na (宁丽娜), Qi Yue-Ying (祁月盈). Chin. Phys. B, 2012, 21(12): 123201.
[8] Chiral asymmetry of anti-symmetric coordinates studied by the Raman differential bond polarizability of S-phenylethylamine
Shen Hong-Xia (沈红霞), Wu Guo-Zhen (吴国祯), Wang Pei-Jie (王培杰). Chin. Phys. B, 2012, 21(12): 123301.
[9] Photoabsorption cross sections of the alkaline-earth-metal elements under strong interaction conditions
Liu Meng-Meng (刘萌萌), Ma Xiao-Guang (马晓光). Chin. Phys. B, 2011, 20(6): 067801.
[10] The evaluation of temporal electronic structures of nonresonant Raman excited virtual state of thiourea
Fang Chao(房超) and Sun Li-Feng(孙立风) . Chin. Phys. B, 2011, 20(4): 043301.
[11] Static dipole polarizabilities of Scn (n≤15) clusters
Li Xi-Bo(李喜波), Wang Hong-Yan(王红艳), Luo Jiang-Shan(罗江山), Guo Yun-Dong(郭云东), Wu Wei-Dong(吴卫东), and Tang Yong-Jian (唐永建). Chin. Phys. B, 2009, 18(8): 3414-3421.
[12] Ab initio calculations for the absorption spectra and polarizabilities of small sulfur clusters
Bai Yu-Lin(白玉林), Chen Xiang-Rong(陈向荣), Cheng Xiao-Hong(程晓洪), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(3): 700-706.
[13] Critical radius and dipole polarizability for a confined system
Xu Tian (许田), Cao Zhuang-Qi (曹庄琪), Ou Yong-Cheng (欧永成), Shen Qi-Shun (沈启舜), Zhu Guo-Long (祝国龙). Chin. Phys. B, 2006, 15(6): 1172-1176.
Sheng Yong (盛勇), Wang Rong (汪蓉), Jiang Gang (蒋刚), Zhu Zheng-he (朱正和). Chin. Phys. B, 2001, 10(6): 505-511.
Wang Xin (汪昕), Zhang Yü (张宇), Deng Hui-hua (邓慧华), Shen Yao-chun (沈耀春), Lu Zu-hong (陆祖宏), Cui Yi-ping (崔一平). Chin. Phys. B, 2001, 10(13): 54-58.
No Suggested Reading articles found!