|
|
Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method |
Tang Yong-Bo (唐永波)a b, Li Cheng-Bin (李承斌)b, Qiao Hao-Xue (乔豪学)a |
a Department of Physics, Wuhan University, Wuhan 430072, China;
b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is then treated in a semi-empirical core polarization potential. As an application, the polarization properties of alkali metal atoms, including the static polarizabilities and long-range two-body dispersion coefficients, have been calculated. Our results are in good agreement with the results obtained from ab initio relativistic many-body perturbation method and the available experimental measurements.
|
Received: 14 November 2013
Revised: 31 December 2013
Accepted manuscript online:
|
PACS:
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.bu
|
(Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.))
|
|
31.30.jc
|
(Relativistic corrections to atomic structure and properties)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11034009 and 11274246). |
Corresponding Authors:
Li Cheng-Bin, Qiao Hao-Xue
E-mail: cbli@wipm.ac.cn;qhx@whu.edu.cn
|
Cite this article:
Tang Yong-Bo (唐永波), Li Cheng-Bin (李承斌), Qiao Hao-Xue (乔豪学) Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method 2014 Chin. Phys. B 23 063101
|
[1] |
Madej A A, Dube P, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002
|
[2] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[3] |
Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
|
[4] |
Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
|
[5] |
Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y and Xu X Y 2013 Chin. Phys. B 22 103701
|
[6] |
Holmgren W F, Trubko R, Hromada I and Cronin A D 2012 Phys. Rev. Lett. 109 243004
|
[7] |
Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
|
[8] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[9] |
Leggett A J 2001 Rev. Mod. Phys. 73 307
|
[10] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[11] |
Arora B, Safronova M S and Clark C W 2011 Phys. Rev. A 84 043401
|
[12] |
LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612
|
[13] |
Molof R W, Schwartz H L, Miller T M and Bederson B 1974 Phys. Rev. A 10 1131
|
[14] |
Hall W D and Zorn J C 1974 Phys. Rev. A 10 1141
|
[15] |
Miffre A, Jacquey M, Büchner M, Trénec G and Vigué J 2006 Phys. Rev. A 73 011603
|
[16] |
Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D and Pritchard D E 1995 Phys. Rev. A 51 3883
|
[17] |
Holmgren W F, Revelle M C, Lonij V P A and Cronin A D 2010 Phys. Rev. A 81 053607
|
[18] |
Amini J M and Gould H 2003 Phys. Rev. Lett. 91 153001
|
[19] |
Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
|
[20] |
Safronova U I 2010 Phys. Rev. A 82 022504
|
[21] |
Sahoo B K and Das B P 2008 Phys. Rev. A 77 062516
|
[22] |
Porsev S G and Derevianko A 2003 J. Chem. Phys. 119 844
|
[23] |
Derevianko A, Porsev S G and Babb J F 2010 At. Data Nucl. Data Tables 96 323
|
[24] |
Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 052714
|
[25] |
Huang S Z and Sun Q F 2011 J. Chem. Phys. 134 144110
|
[26] |
Ye A and Wang G 2008 Phys. Rev. A 78 014502
|
[27] |
Guo K, Wang G and Ye A 2010 J. Phys. B: At. Mol. Opt. Phys. 43 135004
|
[28] |
Müller W, Flesch J and Meyer W 1984 J. Chem. Phys. 80 3297
|
[29] |
Tang Y B, Zhong Z X, Li C B, Qiao H X and Shi T Y 2013 Phys. Rev. A 87 022510
|
[30] |
Zhang Y H, Tang L Y, Zhang X Z, Shi T Y and Mitroy J 2012 Chin. Phys. Lett. 29 063101
|
[31] |
Tang L Y, Tang Y B, Shi T Y and Mitroy J 2013 J. Chem. Phys. 139 134112
|
[32] |
Bachau H, Cormier E, Decleva P, Hansen J E and Martin F 2001 Rep. Prog. Phys. 64 1815
|
[33] |
Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 307
|
[34] |
Parpia F A, Fischer F C and Grant I P 1996 Comput. Phys. Commun. 94 249
|
[35] |
Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2012 NIST Atomic Spectra Database (version 5.0.0)
|
[36] |
Johnson W R, Kolb D and Huang K 1983 At. Data Nucl. Data Tables 28 333
|
[37] |
Tang L Y, Zhang J Y, Yan Z C, Shi T Y and Mitroy J 2010 J. Chem. Phys. 133 104306
|
[38] |
Opik U 1967 Proc. Phys. Soc. London 92 566
|
[39] |
Derevianko A and Porsev S G 2002 Phys. Rev. A 65 053403
|
[40] |
Safronova U I, Johnson W R and Safronova M S 2007 Phys. Rev. A 76 042504
|
[41] |
Tang L Y, Yan Z C, Shi T Y and Babb J F 2009 Phys. Rev. A 79 062712
|
[42] |
Safronova M S, Safronova U I and Clark C W 2012 Phys. Rev. A 86 042505
|
[43] |
Wansbeek L W, Sahoo B K, Timmermans R G E, Das B P and Mukherjee D 2010 Phys. Rev. A 82 029901
|
[44] |
Tang L Y, Bromley M W J, Yan Z C and Mitroy J 2013 Phys. Rev. A 87 032507
|
[45] |
Windholz L, Musso M, Zerza G and Jäger H 1992 Phys. Rev. A 46 5812
|
[46] |
Ashby R, Clarke J J and van Wijingaarden W A 2003 Eur. Phys. J. D 23 327
|
[47] |
Zhu C, Dalgarno A, Porsev S G and Derevianko A 2004 Phys. Rev. A 70 032722
|
[48] |
Windholz L and Neureiter C 1985 Phys. Lett. A 109 155
|
[49] |
Windholz L and Musso M 1989 Phys. Rev. A 39 2472
|
[50] |
Safronova M S, Safronova U I and Clark C W 2013 Phys. Rev. A 87 052504
|
[51] |
Krenn C, Scherf W, Khait O, Musso M and Windholz L 1997 Z. Phys. D: At. Mol. Clusters 41 229
|
[52] |
Miller K E, Krause D and Hunter L R 1994 Phys. Rev. A 49 5128
|
[53] |
Safronova M S and Safronova U I 2011 Phys. Rev. A 83 052508
|
[54] |
Iskrenova-Tchoukova E, Safronova M S and Safronova U I 2007 J. Comput. Methods Sci. Eng. 7 521
|
[55] |
Hunter L R, Krause D, Miller K E, Berkeland D J and Boshier M G 1992 Optica Spektrosk 94 210
|
[56] |
Tanner C and Wieman C 1988 Phys. Rev. A 38 162
|
[57] |
Bennett S C, Roberts J L and Wieman C E 1999 Phys. Rev. A 59 R16
|
[58] |
Domelunksen V 1983 Optica Spektrosk 54 950
|
[59] |
Khadjavi A, Lurio A and Happer W 1968 Phys. Rev. A 167 128
|
[60] |
Khvoshtenko G and Chaika M 1968 Optica Spektrosk 25 246
|
[61] |
Dalgarno A and Davison W D 1966 Advances in Atomic and Molecular Physics, ed. Bates R D and Estermann I (New York/London: Academic Press)
|
[62] |
Patil S H and Tang K T 1997 J. Chem. Phys. 106 2298
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|