Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063101    DOI: 10.1088/1674-1056/23/6/063101

Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method

Tang Yong-Bo (唐永波)a b, Li Cheng-Bin (李承斌)b, Qiao Hao-Xue (乔豪学)a
a Department of Physics, Wuhan University, Wuhan 430072, China;
b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is then treated in a semi-empirical core polarization potential. As an application, the polarization properties of alkali metal atoms, including the static polarizabilities and long-range two-body dispersion coefficients, have been calculated. Our results are in good agreement with the results obtained from ab initio relativistic many-body perturbation method and the available experimental measurements.
Keywords:  Dirac-Fock      core polarization      polarizabilities      alkali metal atoms  
Received:  14 November 2013      Revised:  31 December 2013      Accepted manuscript online: 
PACS:  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  31.15.bu (Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.))  
  31.30.jc (Relativistic corrections to atomic structure and properties)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11034009 and 11274246).
Corresponding Authors:  Li Cheng-Bin, Qiao Hao-Xue     E-mail:;

Cite this article: 

Tang Yong-Bo (唐永波), Li Cheng-Bin (李承斌), Qiao Hao-Xue (乔豪学) Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method 2014 Chin. Phys. B 23 063101

[1] Madej A A, Dube P, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002
[2] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[3] Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
[4] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[5] Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y and Xu X Y 2013 Chin. Phys. B 22 103701
[6] Holmgren W F, Trubko R, Hromada I and Cronin A D 2012 Phys. Rev. Lett. 109 243004
[7] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
[8] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[9] Leggett A J 2001 Rev. Mod. Phys. 73 307
[10] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
[11] Arora B, Safronova M S and Clark C W 2011 Phys. Rev. A 84 043401
[12] LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612
[13] Molof R W, Schwartz H L, Miller T M and Bederson B 1974 Phys. Rev. A 10 1131
[14] Hall W D and Zorn J C 1974 Phys. Rev. A 10 1141
[15] Miffre A, Jacquey M, Büchner M, Trénec G and Vigué J 2006 Phys. Rev. A 73 011603
[16] Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D and Pritchard D E 1995 Phys. Rev. A 51 3883
[17] Holmgren W F, Revelle M C, Lonij V P A and Cronin A D 2010 Phys. Rev. A 81 053607
[18] Amini J M and Gould H 2003 Phys. Rev. Lett. 91 153001
[19] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
[20] Safronova U I 2010 Phys. Rev. A 82 022504
[21] Sahoo B K and Das B P 2008 Phys. Rev. A 77 062516
[22] Porsev S G and Derevianko A 2003 J. Chem. Phys. 119 844
[23] Derevianko A, Porsev S G and Babb J F 2010 At. Data Nucl. Data Tables 96 323
[24] Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 052714
[25] Huang S Z and Sun Q F 2011 J. Chem. Phys. 134 144110
[26] Ye A and Wang G 2008 Phys. Rev. A 78 014502
[27] Guo K, Wang G and Ye A 2010 J. Phys. B: At. Mol. Opt. Phys. 43 135004
[28] Müller W, Flesch J and Meyer W 1984 J. Chem. Phys. 80 3297
[29] Tang Y B, Zhong Z X, Li C B, Qiao H X and Shi T Y 2013 Phys. Rev. A 87 022510
[30] Zhang Y H, Tang L Y, Zhang X Z, Shi T Y and Mitroy J 2012 Chin. Phys. Lett. 29 063101
[31] Tang L Y, Tang Y B, Shi T Y and Mitroy J 2013 J. Chem. Phys. 139 134112
[32] Bachau H, Cormier E, Decleva P, Hansen J E and Martin F 2001 Rep. Prog. Phys. 64 1815
[33] Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 307
[34] Parpia F A, Fischer F C and Grant I P 1996 Comput. Phys. Commun. 94 249
[35] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2012 NIST Atomic Spectra Database (version 5.0.0)
[36] Johnson W R, Kolb D and Huang K 1983 At. Data Nucl. Data Tables 28 333
[37] Tang L Y, Zhang J Y, Yan Z C, Shi T Y and Mitroy J 2010 J. Chem. Phys. 133 104306
[38] Opik U 1967 Proc. Phys. Soc. London 92 566
[39] Derevianko A and Porsev S G 2002 Phys. Rev. A 65 053403
[40] Safronova U I, Johnson W R and Safronova M S 2007 Phys. Rev. A 76 042504
[41] Tang L Y, Yan Z C, Shi T Y and Babb J F 2009 Phys. Rev. A 79 062712
[42] Safronova M S, Safronova U I and Clark C W 2012 Phys. Rev. A 86 042505
[43] Wansbeek L W, Sahoo B K, Timmermans R G E, Das B P and Mukherjee D 2010 Phys. Rev. A 82 029901
[44] Tang L Y, Bromley M W J, Yan Z C and Mitroy J 2013 Phys. Rev. A 87 032507
[45] Windholz L, Musso M, Zerza G and Jäger H 1992 Phys. Rev. A 46 5812
[46] Ashby R, Clarke J J and van Wijingaarden W A 2003 Eur. Phys. J. D 23 327
[47] Zhu C, Dalgarno A, Porsev S G and Derevianko A 2004 Phys. Rev. A 70 032722
[48] Windholz L and Neureiter C 1985 Phys. Lett. A 109 155
[49] Windholz L and Musso M 1989 Phys. Rev. A 39 2472
[50] Safronova M S, Safronova U I and Clark C W 2013 Phys. Rev. A 87 052504
[51] Krenn C, Scherf W, Khait O, Musso M and Windholz L 1997 Z. Phys. D: At. Mol. Clusters 41 229
[52] Miller K E, Krause D and Hunter L R 1994 Phys. Rev. A 49 5128
[53] Safronova M S and Safronova U I 2011 Phys. Rev. A 83 052508
[54] Iskrenova-Tchoukova E, Safronova M S and Safronova U I 2007 J. Comput. Methods Sci. Eng. 7 521
[55] Hunter L R, Krause D, Miller K E, Berkeland D J and Boshier M G 1992 Optica Spektrosk 94 210
[56] Tanner C and Wieman C 1988 Phys. Rev. A 38 162
[57] Bennett S C, Roberts J L and Wieman C E 1999 Phys. Rev. A 59 R16
[58] Domelunksen V 1983 Optica Spektrosk 54 950
[59] Khadjavi A, Lurio A and Happer W 1968 Phys. Rev. A 167 128
[60] Khvoshtenko G and Chaika M 1968 Optica Spektrosk 25 246
[61] Dalgarno A and Davison W D 1966 Advances in Atomic and Molecular Physics, ed. Bates R D and Estermann I (New York/London: Academic Press)
[62] Patil S H and Tang K T 1997 J. Chem. Phys. 106 2298
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[3] Charge disturbance/excitation in the Raman virtual state revealed by ROA signal: A case study of pinane
Ziqi Zhu(祝子祺), Peijie Wang(王培杰), and Guozhen Wu(吴国祯). Chin. Phys. B, 2021, 30(6): 063101.
[4] Calculations of atomic polarizability for beryllium using MCDHF method
Hui Dong(董辉), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), and Gediminas Gaigalas. Chin. Phys. B, 2021, 30(4): 043103.
[5] Effects of electron correlation and the Breit interaction on one- and two-electron one-photon transitions in double K hole states of He-like ions (10≤Z≤47)
Xiaobin Ding(丁晓彬), Cunqiang Wu(吴存强), Mingxin Cao(曹铭欣), Denghong Zhang(张登红), Mingwu Zhang(张明武), Yingli Xue(薛迎利), Deyang Yu(于得洋), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(3): 033101.
[6] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
[7] Structure, stability, catalytic activity, and polarizabilities of small iridium clusters
Francisco E Jorge, José R da Costa Venâncio. Chin. Phys. B, 2018, 27(6): 063102.
[8] Magic wavelengths for the 7s1/2-6d3/2,5/2 transitions in Ra+
Xiao-Mei Wu(吴晓梅), Cheng-Bin Li(李承斌), Yong-Bo Tang(唐永波), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(9): 093101.
[9] Dipole (hyper) polarizabilities of neutral silver clusters
Francisco E Jorge, Luiz G M de Macedo. Chin. Phys. B, 2016, 25(12): 123102.
[10] Calculations of the dynamic dipole polarizabilities for the Li+ ion
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(10): 103101.
[11] Intercombination transitions of the carbon-like isoelectronic sequence
Liu Hao (刘浩), Jiang Gang (蒋刚), Hu Feng (胡峰), Wang Chuan-Ke (王传珂), Wang Zhe-Bin (王哲斌), Yang Jia-Min (杨家敏). Chin. Phys. B, 2013, 22(7): 073202.
[12] Influence of relaxation effects on probabilities of the 2s2p5S2-2s22p2 3P1,2 intercombination transitions in NII
Yuan Ping (袁萍), Liu Xin-Sheng (刘欣生), Xie Lu-You (颉录有), Zhang Yi-Jun (张义军), Dong Chen-Zhong (董晨钟). Chin. Phys. B, 2003, 12(3): 271-274.
No Suggested Reading articles found!