|
|
Magic wavelengths for the 7s1/2-6d3/2,5/2 transitions in Ra+ |
Xiao-Mei Wu(吴晓梅)1,2, Cheng-Bin Li(李承斌)1, Yong-Bo Tang(唐永波)3, Ting-Yun Shi(史庭云)1 |
1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Department of Physics, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract The dynamic polarizabilities of the 7s and 6d states of Ra+ are calculated using a relativistic core polarization potential method. The magic wavelengths of the 7s1/2-6d3/2,5/2 transitions are identified. Comparing to the common radio-frequency (RF) ion traps, using the laser field at the magic wavelength to trap the ion could suppress the frequency uncertainty caused by the micromotion of the ion, and would not affect the transition frequency measurements. The heating rates of the ion and the powers of the laser for the ion trapping are estimated, which would benefit the possible precision measurements based on all-optical trapped Ra+.
|
Received: 10 April 2016
Revised: 17 May 2016
Accepted manuscript online:
|
PACS:
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.bu
|
(Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.))
|
|
31.30.jc
|
(Relativistic corrections to atomic structure and properties)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 91336211 and 11504094). |
Corresponding Authors:
Cheng-Bin Li
E-mail: cbli@wipm.ac.cn
|
Cite this article:
Xiao-Mei Wu(吴晓梅), Cheng-Bin Li(李承斌), Yong-Bo Tang(唐永波), Ting-Yun Shi(史庭云) Magic wavelengths for the 7s1/2-6d3/2,5/2 transitions in Ra+ 2016 Chin. Phys. B 25 093101
|
[1] |
Sahoo B K, Wansbeek L W, Jungmann K and Timmermans R G E 2009 Phys. Rev. A 79 052512
|
[2] |
Versolato O O, Giri G S, Wansbeek L W, van den Berg J E, wan der Hoek D J, Jungmann K, Kruithof W L, Onderwater C J G, Sahoo B K, Santra B, Shidling P D, Timmermans R G E, Willmann L and Wilschut H W 2009 Phys. Rev. A 82 010501
|
[3] |
Sahoo B K, Timmermans R G E, Das B P and Mukherjee D 2009 Phys. Rev. A 80 062506
|
[4] |
Sahoo B K, Das B P, Chaudhri R K, Mukherjee D, Timmermans R G E and Jungmann K 2007 Phys. Rev. A 76 040504
|
[5] |
Versolato O O, Wansbeek L W, Jungmann K, Timmermans R G E, Willmann L and Wilschut H W 2011 Phys. Rev. A 83 043829
|
[6] |
Wansbeek L W, Sahoo B K, Timmermans R G E, Jungmann K, Das B P and Mukherjee D 2008 Phys. Rev. A 78 050501
|
[7] |
Pal R, Jiang D, Safronova M S and Sfronova U I 2009 Phys. Rev. A 79 062505
|
[8] |
Roberts B M, Dzuba V A and Flambaum V V 2014 Phys. Rev. A 89 012502
|
[9] |
Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
|
[10] |
Safronova U I, Johnson W R and Safronova M S 2007 Phys. Rev. A 76 042504
|
[11] |
Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
|
[12] |
Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
|
[13] |
Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
|
[14] |
Enderlein M, Huber T, Schneider C and Schartz T 2012 Phys. Rev. Lett. 109 233004
|
[15] |
Linnet R B, Leroux I D, Marciante M, Dantan A and Drewsen M 2012 Phys. Rev. Lett. 109 233005
|
[16] |
Cormick C, Schaetz T and Morigi G 2011 New J. Phys. 13 043019
|
[17] |
Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2015 Phys. Rev. Lett. 114 223001
|
[18] |
Tang Y B, Li C B and Qiao H X 2014 Chin. Phys. B 23 063101
|
[19] |
Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2015 NIST Atomic Spectra Database (version 5)
|
[20] |
Kaur J, Nandy D K, Arora B and Sahoo B K 2015 Phys. Rev. A 91 012705
|
[21] |
Takamoto M, Katori H, Marmo S I, Ovsiannikov V D and Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002
|
[22] |
Gong S J, Zhou F, Wu H Y, Wan W, Chen L and Feng M 2015 Chin. Phys. Lett. 32 013201
|
[23] |
Schneider C, Enderlein M, Huber T, Dürr S and Schaetz T 2012 Phys.Rev. A 85 013422
|
[24] |
Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A 69 021403
|
[25] |
Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phy. 42 95
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|