|
|
Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study |
Hao-Ran Zhu(祝浩然)1,2, Jia-Liang Chen(陈嘉亮)1, and Shi-Hao Wei(韦世豪)1,† |
1 Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China |
|
|
Abstract It is essential to explore high efficient catalysts for nitrogen reduction in ammonia production. Based on the first-principles calculation, we find that B/g-C2N can serve as high performance photocatalyst in N2 fixation, where single boron atom is anchored on the g-C2N to form B/g-C2N. With the introduction of B atom to g-C2N, the energy gap reduces from 2.45 eV to 1.21 eV and shows strong absorption in the visible light region. In addition, N2 can be efficiently reduced on B/g-C2N through the enzymatic mechanism with low onset potential of 0.07 V and rate-determining barrier of 0.50 eV. The "acceptance-donation" interaction between B/g-C2N and N2 plays a key role to active N2, and the BN2 moiety of B/g-C2N acts as active and transportation center. The activity originates from the strong interaction between 1π1π* orbitals of N2 and molecular orbitals of B/g-C2N, the ionization of 1π orbital and the filling of 1π* orbital can increase the N≡N bond length greatly, making the activation of N2. Overall, this work demonstrates that B/g-C2N is a promising photocatalyst for N2 fixation.
|
Received: 24 December 2020
Revised: 04 February 2021
Accepted manuscript online: 08 February 2021
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
34.70.+e
|
(Charge transfer)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51871126) and the K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Shi-Hao Wei
E-mail: weishihao@nbu.edu.cn
|
Cite this article:
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪) Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study 2021 Chin. Phys. B 30 083101
|
[1] Rosca V, Duca M, de Groot M T and Koper M T 2009 Chem. Rev. 109 2209 [2] Licht S, Cui B, Wang B H, Li F F, Lau J and Liu S Z 2014 Science 345 637 [3] Smil V 1999 Nature 400 415 [4] Service R F 2014 Science 345 610 [5] Van der Ham C J M, Koper M T M and Hetterscheid D G H 2014 Chem. Soc. Rev. 43 5183 [6] Oshikiri T, Ueno K and Misawa H 2016 Angew. Chem. 128 4010 [7] Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M and Hosono H 2012 Nat. Chem. 4 934 [8] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K and Jaramillo T F 2017 Science 355 eaad4998 [9] Banerjee A, Yuhas B D, Margulies E A, Zhang Y B, Shim Y, Wasielewski M R and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 2030 [10] Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q and Zhang X B 2017 Adv. Mater. 29 1604799 [11] Sun K, Moreno-Hernandez I A, Schmidt W C, Zhou X, Crompton J C, Liu R, Saadi F H, Chen Y, Papadantonakis K M and Lewis N S 2017 Energy Environ. Sci. 10 987 [12] Montoya J H, Tsai C, Vojvodic A and Norskov J K 2015 Chem. Sus. Chem. 8 2180 [13] Azofra L M, Li N, MacFarlane D R and Sun C 2016 Energy Environ. Sci. 9 2545 [14] Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J and Zheng G 2018 Joule 2 1610 [15] Guo C, Ran J, Vasileff A and Qiao S Z 2018 Energy Environ. Sci. 11 45 [16] Qiu W, Xie X Y, Qiu J, Fang W H, Liang R, Ren X, Ji X, Cui G, Asiri A M, Cui G, Tang B and Sun X 2018 Nat. Commun. 9 3485 [17] Tao H, Choi C, Ding L X, Jiang Z, Han Z, Jia M, Fan Q, Gao Y, Wang H, Robertson A W, Hong S, Jung Y, Liu S and Sun Z 2019 Chem 5 204 [18] Qu L, Liu Y, Baek J B and Dai L 2010 ACS Nano 4 1321 [19] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J and Kang Z 2015 Science 347 970 [20] Xu Y, Kraft M, Xu R 2016 Chem. Soc. Rev. 45 3039 [21] Yang S, Feng X, Wang X and Müllen K 2011 Angew. Chem. 123 5451 [22] Zheng Y, Jiao Y, Zhu Y, Li L H, Han Y, Chen Y and Qiao S Z 2014 Nat. Commun. 5 3783 [23] Xia Z 2016 Nature Energy 1 16155 [24] He J, Wang N, Yang Z, Shen X, Wang K, Huang C and Li Y 2018 Energy Environ. Sci. 11 2893 [25] Zhao Z, Li M, Zhang L, Dai L and Xia Z 2015 Adv. Mater. 27 6834 [26] Ran J, Guo W, Wang H, Zhu B, Yu J and Qiao S Z 2018 Adv. Mater. 30 1800128 [27] Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J and Jaramillo T F 2018 Nature Catalysis 1 156 [28] Xie J, Zhao X, Wu M, Li Q, Wang Y and Yao J 2018 Angew. Chem. Int. Ed. 57 9640 [29] Ling C, Niu X, Li Q, Du A and Wang J 2018 J. Am. Chem. Soc. 140 14161 [30] Li Y Y, Ma S F, Zhou B X, Huang W Q, Fan X X, Li X F, Li K and Huang G F 2019 J. Phys. D: Appl. Phys. 52 105502 [31] Li Y Y, Si Y, Han E X, Huang W Q, Hu W Y, Pan A L, Fan X X and Huang G F 2020 J. Phys. D: Appl. Phys. 53 015502 [32] Li Y Y, Si Y, Zhou B X, Huang W Q, Hu W Y, Pan A L, Fan X X and Huang G F 2019 Nanoscale 11 16393 [33] Yu S, Rao Y C and Duan X M 2017 Chin. Phys. B 26 087301 [34] Liu J, Zhang Y H, Bai Z M, Huang Z A and Gao Y K 2019 Chin. Phys. B 28 048101 [35] Chu Z Q, Gu X and Duan X M 2019 Chin. Phys. B 28 128703 [36] Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M and Park N 2015 Nat. Commun. 6 6486 [37] Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J and Baek J B 2017 Nat. Nanotechnol. 12 441 [38] Zhang X, Chen A, Zhang Z, Jiao M and Zhou Z 2018 J. Mater. Chem. A 6 11446 [39] Wang L, Zheng X, Chen L, Xiong Y and Xu H 2018 Angew. Chem. 130 3512 [40] Zhang X, Chen A, Zhang Z and Zhou Z 2018 J. Mater. Chem. A 6 18599 [41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [43] Blöchl P E 1994 Phys. Rev. B 50 17953 [44] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [45] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [46] Grimme S 2006 J. Comput. Chem. 27 1787 [47] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [48] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [49] Nie X, Esopi M R, Janik M J and Asthagiri A 2013 Angew. Chem. Int. Ed. 52 2459 [50] Rappe A K, Casewit C J, Colwell K S, Iii W A, Goddard and Skiff W M 1992 J. Am. Chem. Soc. 114 10024 [51] Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T and Jónsson H 2004 J. Phys. Chem. B 108 17886 [52] Rossmeisl J, Logadottir A and Norskov J K 2005 Chem. Phys. 319 178 [53] Zhang H, Zhang X, Yang G and Zhou X 2018 J. Phys. Chem. C 122 5291 [54] Zhang R, Li B and Yang J 2015 Nanoscale 7 14062 [55] Zhu H R, Hu Y L, Wei S H and Hua D Y 2019 J. Phys. Chem. C 123 4274 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|