Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 083101    DOI: 10.1088/1674-1056/abe3f6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study

Hao-Ran Zhu(祝浩然)1,2, Jia-Liang Chen(陈嘉亮)1, and Shi-Hao Wei(韦世豪)1,†
1 Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
Abstract  It is essential to explore high efficient catalysts for nitrogen reduction in ammonia production. Based on the first-principles calculation, we find that B/g-C2N can serve as high performance photocatalyst in N2 fixation, where single boron atom is anchored on the g-C2N to form B/g-C2N. With the introduction of B atom to g-C2N, the energy gap reduces from 2.45 eV to 1.21 eV and shows strong absorption in the visible light region. In addition, N2 can be efficiently reduced on B/g-C2N through the enzymatic mechanism with low onset potential of 0.07 V and rate-determining barrier of 0.50 eV. The "acceptance-donation" interaction between B/g-C2N and N2 plays a key role to active N2, and the BN2 moiety of B/g-C2N acts as active and transportation center. The activity originates from the strong interaction between 1π1π* orbitals of N2 and molecular orbitals of B/g-C2N, the ionization of 1π orbital and the filling of 1π* orbital can increase the N≡N bond length greatly, making the activation of N2. Overall, this work demonstrates that B/g-C2N is a promising photocatalyst for N2 fixation.
Keywords:  first-principles calculation      N2 reduction      catalysts      electronic structure      reaction mechanisms      reaction paths  
Received:  24 December 2020      Revised:  04 February 2021      Accepted manuscript online:  08 February 2021
PACS:  31.15.A- (Ab initio calculations)  
  34.70.+e (Charge transfer)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51871126) and the K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Shi-Hao Wei     E-mail:  weishihao@nbu.edu.cn

Cite this article: 

Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪) Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study 2021 Chin. Phys. B 30 083101

[1] Rosca V, Duca M, de Groot M T and Koper M T 2009 Chem. Rev. 109 2209
[2] Licht S, Cui B, Wang B H, Li F F, Lau J and Liu S Z 2014 Science 345 637
[3] Smil V 1999 Nature 400 415
[4] Service R F 2014 Science 345 610
[5] Van der Ham C J M, Koper M T M and Hetterscheid D G H 2014 Chem. Soc. Rev. 43 5183
[6] Oshikiri T, Ueno K and Misawa H 2016 Angew. Chem. 128 4010
[7] Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M and Hosono H 2012 Nat. Chem. 4 934
[8] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K and Jaramillo T F 2017 Science 355 eaad4998
[9] Banerjee A, Yuhas B D, Margulies E A, Zhang Y B, Shim Y, Wasielewski M R and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 2030
[10] Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q and Zhang X B 2017 Adv. Mater. 29 1604799
[11] Sun K, Moreno-Hernandez I A, Schmidt W C, Zhou X, Crompton J C, Liu R, Saadi F H, Chen Y, Papadantonakis K M and Lewis N S 2017 Energy Environ. Sci. 10 987
[12] Montoya J H, Tsai C, Vojvodic A and Norskov J K 2015 Chem. Sus. Chem. 8 2180
[13] Azofra L M, Li N, MacFarlane D R and Sun C 2016 Energy Environ. Sci. 9 2545
[14] Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J and Zheng G 2018 Joule 2 1610
[15] Guo C, Ran J, Vasileff A and Qiao S Z 2018 Energy Environ. Sci. 11 45
[16] Qiu W, Xie X Y, Qiu J, Fang W H, Liang R, Ren X, Ji X, Cui G, Asiri A M, Cui G, Tang B and Sun X 2018 Nat. Commun. 9 3485
[17] Tao H, Choi C, Ding L X, Jiang Z, Han Z, Jia M, Fan Q, Gao Y, Wang H, Robertson A W, Hong S, Jung Y, Liu S and Sun Z 2019 Chem 5 204
[18] Qu L, Liu Y, Baek J B and Dai L 2010 ACS Nano 4 1321
[19] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J and Kang Z 2015 Science 347 970
[20] Xu Y, Kraft M, Xu R 2016 Chem. Soc. Rev. 45 3039
[21] Yang S, Feng X, Wang X and Müllen K 2011 Angew. Chem. 123 5451
[22] Zheng Y, Jiao Y, Zhu Y, Li L H, Han Y, Chen Y and Qiao S Z 2014 Nat. Commun. 5 3783
[23] Xia Z 2016 Nature Energy 1 16155
[24] He J, Wang N, Yang Z, Shen X, Wang K, Huang C and Li Y 2018 Energy Environ. Sci. 11 2893
[25] Zhao Z, Li M, Zhang L, Dai L and Xia Z 2015 Adv. Mater. 27 6834
[26] Ran J, Guo W, Wang H, Zhu B, Yu J and Qiao S Z 2018 Adv. Mater. 30 1800128
[27] Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J and Jaramillo T F 2018 Nature Catalysis 1 156
[28] Xie J, Zhao X, Wu M, Li Q, Wang Y and Yao J 2018 Angew. Chem. Int. Ed. 57 9640
[29] Ling C, Niu X, Li Q, Du A and Wang J 2018 J. Am. Chem. Soc. 140 14161
[30] Li Y Y, Ma S F, Zhou B X, Huang W Q, Fan X X, Li X F, Li K and Huang G F 2019 J. Phys. D: Appl. Phys. 52 105502
[31] Li Y Y, Si Y, Han E X, Huang W Q, Hu W Y, Pan A L, Fan X X and Huang G F 2020 J. Phys. D: Appl. Phys. 53 015502
[32] Li Y Y, Si Y, Zhou B X, Huang W Q, Hu W Y, Pan A L, Fan X X and Huang G F 2019 Nanoscale 11 16393
[33] Yu S, Rao Y C and Duan X M 2017 Chin. Phys. B 26 087301
[34] Liu J, Zhang Y H, Bai Z M, Huang Z A and Gao Y K 2019 Chin. Phys. B 28 048101
[35] Chu Z Q, Gu X and Duan X M 2019 Chin. Phys. B 28 128703
[36] Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M and Park N 2015 Nat. Commun. 6 6486
[37] Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J and Baek J B 2017 Nat. Nanotechnol. 12 441
[38] Zhang X, Chen A, Zhang Z, Jiao M and Zhou Z 2018 J. Mater. Chem. A 6 11446
[39] Wang L, Zheng X, Chen L, Xiong Y and Xu H 2018 Angew. Chem. 130 3512
[40] Zhang X, Chen A, Zhang Z and Zhou Z 2018 J. Mater. Chem. A 6 18599
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[45] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[46] Grimme S 2006 J. Comput. Chem. 27 1787
[47] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[48] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[49] Nie X, Esopi M R, Janik M J and Asthagiri A 2013 Angew. Chem. Int. Ed. 52 2459
[50] Rappe A K, Casewit C J, Colwell K S, Iii W A, Goddard and Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[51] Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T and Jónsson H 2004 J. Phys. Chem. B 108 17886
[52] Rossmeisl J, Logadottir A and Norskov J K 2005 Chem. Phys. 319 178
[53] Zhang H, Zhang X, Yang G and Zhou X 2018 J. Phys. Chem. C 122 5291
[54] Zhang R, Li B and Yang J 2015 Nanoscale 7 14062
[55] Zhu H R, Hu Y L, Wei S H and Hua D Y 2019 J. Phys. Chem. C 123 4274
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!