Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066102    DOI: 10.1088/1674-1056/25/6/066102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study

Qing-Yin Zhang(张庆印)1,2,3, Peng Xie(谢鹏)1, Xin Wang(王欣)2, Xue-Wen Yu(于学文)3, Zhi-Qiang Shi(时志强)3, Shi-Huai Zhao(赵世怀)1
1 The State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
3 Laboratory of Fiber Modification and Functional Fiber, College of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
Abstract  

Organic salts such as spiro-(1,1')-bipyrrolidinium tetrafluoroborate ([SBP][BF4]) dissolved in liquid acetonitrile (ACN) are a new kind of organic salt solution, which is expected to be used as an electrolyte in electrical double layer capacitors (EDLCs). To explore the physicochemical properties of the solution, an all-atom force field is established on the basis of AMBER parameter values and quantum mechanical calculations. Molecular dynamics (MD) simulations are carried out to explore the liquid structure and physicochemical properties of [SBP][BF4] electrolyte at room temperature. The computed thermodynamic and transport properties match the available experimental results very well. The microscopic structures of [SBP][BF4] salt solution are also discussed in detail. The method used in this work provides an efficient way of predicting the properties of organic salt solvent as an electrolyte in EDLCs.

Keywords:  electrolyte      self-diffusion      viscosity      molecular dynamics  
Received:  19 October 2015      Revised:  26 January 2016      Accepted manuscript online: 
PACS:  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
  61.20.Ja (Computer simulation of liquid structure)  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21476172 and 51172160), the National High Technology Research and Development Program of China (Grant No. 2013AA050905), and the Natural Science Foundation of Tianjin, China (Grant Nos. 12JCZDJC28400, 14RCHZGX00859, 14JCTPJC00484, and 14JCQNJC07200).

Corresponding Authors:  Qing-Yin Zhang, Zhi-Qiang Shi     E-mail:  zhangqingyin@tjpu.edu.cn;shizhiqiang@tjpu.edu.cn

Cite this article: 

Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀) Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study 2016 Chin. Phys. B 25 066102

[1] Kotz R and Carlen M 2000 Electrochim. Acta 45 2483
[2] Hall P J, Mirzaeian M, Fletcher S I, Sillars F B, Rennie A J R, Shitta-Bey G O, Wilson G, Cruden A and Carter R 2010 Energy Environ. Sci. 3 1238
[3] Gao Q, Demarconnay L, Raymundo-Pinero E and Beguin F 2012 Energy Environ. Sci. 5 9611
[4] Demarconnay L, Raymundo-Pinero E and Beguin F 2010 Electrochem. Commun. 12 1275
[5] Fic K, Lota G, Meller M and Frackowiak E 2012 Energy Environ. Sci. 5 5842
[6] Burke A 2007 Electrochim. Acta 53 1083
[7] Beguin F, Presser V, Balducci A and Frackowiak E 2014 Adv. Mater. 26 2219
[8] Plechkova N V and Seddon K R 2008 Chem. Soc. Rev. 37 123
[9] Schuetter C, Husch T, Korth M and Balducci A 2015 J. Phys. Chem. C 119 13413
[10] Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P and Taberna P L 2006 Science 313 1760
[11] Yang L, Fishbine B H, Migliori A and Pratt L R 2009 J. Am. Chem. Soc. 131 12373
[12] Feng G, Huang J, Sumpter B G, Meunier V and Qiao R 2010 Phys. Chem. Chem. Phys. 12 5468
[13] Vatamanu J, Borodin O and Smith G D 2011 J. Phys. Chem. B 115 3073
[14] Shim Y, Jung Y and Kim H J 2011 J. Phys. Chem. C 115 23574
[15] Higashiya S, Devarajan T S, Rane-Fondacaro M V, Dangler C, Snyder J and Haldar P 2009 Helv. Chim. Acta 92 1600
[16] Chiba K, Ueda T and Yamamoto H 2007 Electrochem. 75 664
[17] Perricone E, Chamas M, Lepretre J C, Judeinstein P, Azais P, Raymundo-Pinero E, Beguin F and Alloin F 2013 J. Power Sources 239 217
[18] Zheng C, Gao J, Yoshio M, Qi L and Wang H 2013 J. Power Sources 231 29
[19] Yu X, Ruan D, Wu C, Wang J and Shi Z 2014 J. Power Sources 265 309
[20] Shi Z, Yu X, Wang J, Hu H and Wu C 2015 Electrochim. Acta 174 215
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Delley B 1996 J. Phys. Chem. 100 6107
[23] Delley B 2000 J. Chem. Phys. 113 7756
[24] Yu Y X 2013 J. Mater. Chem. A 1 13559
[25] Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267
[26] Mulliken R S 1955 J. Chem. Phys. 23 1833
[27] Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819
[28] Weiner S J, Kollman P A, Case D A, Singh U C, Ghio C, Alagona G, Profeta S and Weiner P 1984 J. Am. Chem. Soc. 106 765
[29] Yu Y X and Fujinoto S 2013 Sci. China: Chem. 56 1735
[30] Soolo E, Brandell D, Liivat A, Kasemagi H, Tamm T and Aabloo A 2012 J. Mol. Model. 18 1541
[31] De Andrade J, Boes E S and Stassen H 2002 J. Phys. Chem. B 106 13344
[32] Wu X, Liu Z, Huang S and Wang W 2005 Phys. Chem. Chem. Phys. 7 2771
[33] Plimpton S 1995 J. Comput. Phys. 117 1
[34] Nose S 1984 J. Chem. Phys. 81 511
[35] Hoover W G 1985 Phys. Rev. A 31 1695
[36] Humphrey W, Dalke A and Schulten K 1996 J. Molec. Graphics 14 33
[37] Zeng J, Zhang Y, Sun R and Chen S 2014 Electrochim. Acta 134 193
[38] Fan Y S, Chen X, Zhou W, Shi S P and Li Y 2011 Acta Phys. Sin. 60 032802 (in Chinese)
[39] Farhadian N and Malek K 2014 Solid State Ionics 268 162
[40] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[41] Morrow T I and Maginn E J 2003 J. Phys. Chem. B 106 12807
[42] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) pp. 64-64
[43] Noda A, Hayamizu K and Watanabe M 2001 J. Phys. Chem. B 105 4603
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
No Suggested Reading articles found!