|
|
Calculations of the dynamic dipole polarizabilities for the Li+ ion |
Yong-Hui Zhang(张永慧)1,2, Li-Yan Tang(唐丽艳)2, Xian-Zhou Zhang(张现周)1, Ting-Yun Shi(史庭云)2 |
1 Department of Physics, Henan Normal University, Xinxiang 453007, China;
2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract The B-spline configuration-interaction method is applied into the investigations of dynamic dipole polarizabilities for the four lowest triplet states (23S, 33S, 23P, and 33P) of the Li+ ion. The accurate energies for the triplet states of n3S, n3P, and n3D, the dipole oscillator strengths for 23S(33S)→n3P, 23P(33P)→n3S, and 23P(33P)→n3D transitions, with the main quantum number n up to 10 are tabulated for references. The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed, which provide input data for analyzing the Stark shift of Li+ ion. Furthermore, the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states, and the magic wavelengths in the range from 100 nm to 600 nm for the 23S→33S, 23S→23P, and 23S→33P transitions are determined accurately for the experimental design of the Li+ ion.
|
Received: 31 March 2016
Revised: 23 May 2016
Accepted manuscript online:
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11474319, 11274348, and 91536102). |
Corresponding Authors:
Li-Yan Tang
E-mail: lytang@wipm.ac.cn
|
Cite this article:
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云) Calculations of the dynamic dipole polarizabilities for the Li+ ion 2016 Chin. Phys. B 25 103101
|
[1] |
Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H and Putlitz G Z 1983 Hyp. Int. 15 159
|
[2] |
Clarke J J and van Wijngaarden W A 2003 Phys. Rev. A 67 012506
|
[3] |
Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C and Levick A P 1994 Phys. Rev. A 49 207
|
[4] |
Pachucki K and Yerokhin V A 2009 Phys. Rev. A 79 062516
|
[5] |
Zelevinsky T, Farkas D and Gabrielse G 2005 Phys. Rev. Lett. 95 203001
|
[6] |
Borbely J S, George M C, Lombardi L D, Weel M, Fitzakerley D W and Hessels E A 2009 Phys. Rev. A 79 060503
|
[7] |
Pachucki K and Yerokhin V A 2010 Phys. Rev. Lett. 104 070403
|
[8] |
Zhang P P, Zhong Z X, Yan Z C and Shi T Y 2015 Chin. Phys. B 24 033101
|
[9] |
Rong H, Grafström S, Kowalski J, Putlitz G z, Jastrzebski W and Neumann R 1993 Z. Phys. D 25 337
|
[10] |
Wijngaarden W A van and Noble G A 2008 Lect. Notes Phys. 745 111
|
[11] |
Botermann B, Bing D, Geppert C, Gwinner G, Hänsch T W, Huber G, Karpuk S, Krieger A, Kühl T, Nörtershäuser W, Novotny C, Reinhardt S, Sánchez R, Schwalm D, Stöhlker T, Wolf A and Saathoff G 2014 Phys. Rev. Lett. 113 120405
|
[12] |
Arora B and Sahoo B K 2014 Phys. Rev. A 89 022511
|
[13] |
Porsev S G, Safronova M S, Derevianko A and Clark C W 2014 Phys. Rev. A 89 022703
|
[14] |
Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B 43 202001
|
[15] |
Ward S J and Shertzer J 2004 Nucl. Instrum. Method Phys. Res. B 221 206
|
[16] |
Han H, Zhong Z, Zhang X and Shi T 2008 Phys. Rev. A 78 044701
|
[17] |
Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2015 Phys. Rev. Lett. 114 223001
|
[18] |
Tang L Y, Bromley M W J, Yan Z C and Mitroy J 2013 Phys. Rev. A 87 032507
|
[19] |
Farley J W and Wing W H 1981 Phys. Rev. A 23 2397
|
[20] |
Safronova M S, Safronova U I and Clark C W 2012 Phys. Rev. A 86 042505
|
[21] |
Yu W W, Yu R M, Cheng Y J and Zhou Y J 2016 Chin. Phys. B 25 023101
|
[22] |
Udem Th, Holzwarth R and Hänsch T W 2002 Nature 416 233
|
[23] |
Margolis H S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154017
|
[24] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[25] |
Glover R M and Weinhold F 1976 J. Chem. Phys. 65 4913
|
[26] |
Bishop D M and Rérat M 1989 J. Chem. Phys. 91 5489
|
[27] |
Banerjee A and Harbola M K 1997 Pramana. J. Phys. 49 455
|
[28] |
Bhatia A K and Drachman R J 1997 Can. J. Phys. 75 11
|
[29] |
Zhu J M, Zhou B L and Yan Z C 1999 Chem. Phys. Lett. 313 184
|
[30] |
Johnson W R and Cheng K T 1996 Phys. Rev. A 53 1375
|
[31] |
Bhatia A K and Drachman R J 1997 Phys. Rev. A 55 1842
|
[32] |
Lim I S, Laerdahl J K and Schwerdtfeger P 2002 J. Chem. Phys. 116 172
|
[33] |
Chung K T 1971 Phys. Rev. A 4 7
|
[34] |
Chen M K 1995 J. Phys. B: At. Mol. Opt. Phys. 28 1349
|
[35] |
Zhu J M, Zhou B L and Yan Z C 2000 Mol. Phys. 98 529
|
[36] |
Yan Z C, Zhu J M and Zhou B L 2000 Phys. Rev. A 62 034501
|
[37] |
Glover R M and Weinhold F 1977 J. Chem. Phys. 66 185
|
[38] |
Glover R M and Weinhold F 1977 J. Chem. Phys. 66 191
|
[39] |
Zhang Y H, Tang L Y, Zhang X Z and Shi T Y 2015 Phys. Rev. A 92 012515
|
[40] |
Lin Y C, Fang T K and Ho Y K 2015 Phys. Plasmas 22 032113
|
[41] |
Yulian V V and Alejandro S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4101
|
[42] |
Nikolopoulos L A A 2003 Comput. Phys. Commun. 150 140
|
[43] |
Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2012 “NIST Atomic Spectra Database”(version 5.0.0) URL http://physics.nist.gov/asd
|
[44] |
Cann N M and Thakkar A J 1992 Phys. Rev. A 46 5397
|
[45] |
Accad Y, Pekeris C L and Schiff B 1971 Phys. Rev. A 4 516
|
[46] |
Godefroid M and Verhaegen G 1980 J. Phys. B: At. Mol. Opt. Phys. 13 3081
|
[47] |
Schiff B, Pekeris C L and Accad Y 1971 Phys. Rev. A 4 885
|
[48] |
Kono A and Hattori S 1984 Phys. Rev. A 30 2093
|
[49] |
LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612
|
[50] |
Mitroy J and Tang L Y 2013 Phys. Rev. A 88 052515
|
[51] |
Ye J, Vernooy D W and Kimble H J 1999 Phys. Rev. Lett. 83 4987
|
[52] |
Katori H, Ido T and Kuwata-Gonokami M 1999 J. Phys. Soc. Jpn. 68 2479
|
[53] |
Safronova M S, Safronova U I and Clark C W 2013 Phys. Rev. A 87 052504
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|