Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086101    DOI: 10.1088/1674-1056/ac0691
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals

Wen Cui(崔雯)1,†, De-Jun Li(李德军)1, Jin-Liang Guo(郭金良)1, Lang-Huan Zhao(赵琅嬛)1, Bing-Bing Liu(刘冰冰)2, and Shi-Shuai Sun(孙士帅)3,‡
1 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3 College of Science, Tianjin University of Technology, Tianjin 300384, China
Abstract  Different C60 crystals were synthesized by precipitation from a mixture of the good solvent m-xylene and the poor solvent isopropyl alcohol. The samples were characterized by scanning electron microscopy (SEM), Raman spectroscopy, thermogravimetric analysis, and high resolution transmission electron microscope (HRTEM). We found that the morphologies and sizes of the samples could be controlled by adjusting the volume ratio between the good and poor solvents. Especially, an unexpected short flower column-like crystal was synthesized at low ratios (from 1:6 to 1:12). Room temperature photoluminescence (PL) and HRTEM studies of the C60 crystal samples reveal that the PL efficiency of the crystals decreases with increasing crystalline order and that the disordered C60 crystals synthesized at the ratio of 1:2 show 10 times higher PL efficiency than that of pristine C60. The mechanism of the growth process of these C60 crystals was also studied by replacing the good solvents m-xylene with toluene and mesitylene.
Keywords:  C60 crystals      morphology      photoluminescence      growth process  
Received:  18 March 2021      Revised:  26 May 2021      Accepted manuscript online:  29 May 2021
PACS:  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  78.55.-m (Photoluminescence, properties and materials)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504269 and 11504267), Tianjin Natural Science Foundation (Grant No. 20JCQNJC00660), and the Program for Innovative Research in University of Tianjin (Grant No. TD13-5077).
Corresponding Authors:  Wen Cui, Shi-Shuai Sun     E-mail:  cuiwen2005xj@126.com;sssdashuai@163.com

Cite this article: 

Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅) Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals 2021 Chin. Phys. B 30 086101

[1] Komatsu K, Murata M and Murata Y 2005 Science 307 238
[2] Dresselhaus M S, Dresselhaus G and Eklund P C 1997 Carbon 35 437
[3] Minato J and Miyazawa K 2005 Carbon 43 2837
[4] Yao M G, Andersson B M, Stenmark P, Sundqvist B, Liu B B and Wagberg T 2009 Carbon 47 1181
[5] Bae E, Kim N D, Kwak B K, Park J, Lee J, Kim Y, Choi K and Yi J 2010 Carbon 48 3676
[6] Ai M, Li J, Ji Z J, Wang C H, Li R, Dai W and Chen M 2019 RSC Adv. 9 3050
[7] Liu H B, Li Y L, Jiang L, Luo H Y, Xiao S Q, Fang H J, Li H M, Zhu D B, Yu A P, Xu J and Xiang B 2002 J. Am. Chem. Soc. 124 13370
[8] Wang L, Liu B B, Yu S D, Yao M G, Liu D D, Hou Y Y, Tian C, Zou G T, Sundqvist B, You H, Zhang D K and Ma D G 2006 Chem. Mater. 18 4190
[9] Ji H X, Hu J S, Wan L J, Tang Q X and Hu W P 2008 J. Mater. Chem. 18 328
[10] Shin H S, Yoon S M, Tang Q, Chon B, Joo T and Choi H G 2008 Angew. Chem. 120 705
[11] Miyazawa K and Hamamoto K 2002 J. Mater. Res. 17 2205
[12] Xu M, Pathak Y, Fujita D, Ringor C and Miyazawa K 2008 Nanotechnology 19 075712
[13] Park C, Song H J and Choi H C 2009 Chem. Commun. 4803
[14] Sathish M and Miyazawa K 2007 J. Am. Chem. Soc. 129 13816
[15] Park C, Yoon E, Kawano M, Joo T and Choi H C 2010 Angew. Chem., Int. Ed. 49 9670
[16] Yao M G, Fan X H, Liu D D, Liu B B and Wagberg T 2012 Carbon 50 209
[17] Ji H X, Hu J S, Tang Q X, Song W G, Wang C R, Hu W P, Wan L J and Lee S T 2007 J. Phys. Chem. C 111 10498
[18] Kim J, Park C and Choi H C 2015 Chem. Mater. 27 2408
[19] Geng J, Zhou W, Skelton P, Yue W, Kinloch I A, Windle A H and Johnson B F G 2008 J. Am. Chem. Soc. 130 2527
[20] Alargova R G, Deguchi S and Tsujii K 2001 J. Am. Chem. Soc. 123 10460
[21] Sun Y P and Bunker C E 1993 Nature 365 398
[22] Bokare A D and Patnaik A 2005 J. Phys. Chem. B 109 87
[23] Ruoff R S, Tse D S, Malhotra R and Lorents D C 1993 J. Phys. Chem. 97 3379
[24] Ouyang J, Pei J, Kuang Q, Xie Z and Zheng L 2014 ACS Appl. Mater. Interfaces 6 12505
[25] Nichols P L, Sun M and Ning C 2011 ACS Nano 5 8730
[26] Zhang X J, Zhao C P, Lv J Y, Dong C, Ou X M, Zhang X H and Lee S T 2011 Cryst. Growth Des. 11 3677
[27] Jeong J, Kim W S, Park S I, Yoon T S and Chung B H 2010 J. Phys. Chem. C 114 12976
[28] Talyzin A and Jansson U 2000 J. Phys. Chem. B 104 5064
[29] Li Y J, Lin Y, Wang N, Li Y L, Liu H B, Lu F S, Zhuang J P and Zhu D B 2005 Carbon 43 1968
[30] Xiao J C, Liu Y, Li Y J, Ye J P, Li Y L, Xu X H, Li X F, Liu H B, Huang C S, Cui S and Zhu D B 2006 Carbon 44 2785
[31] Liu D D, Yao M G, Li Q J, Cui W, Wang L, Li Z P, Liu B, Lv H, Zou B, Cui T, Liu B B and Sundqvist B 2012 J. Raman Spectrosc. 43 737
[32] Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W and Silva S R 2006 J. Mater. Chem. 16 3715
[33] Wu J H, Zhu X J, Guan Y, Wang Y J, Jin F, Guan R N, Liu F P, Chen M Q, Tian Y C and Yang S F 2019 Angew. Chem. Int. Ed. 58 11350
[34] Cha S I, Miyazawa K, Kim Y K, Lee D Y and Kim J D 2011 J. Nanosci. Nanotechnol. 11 3374
[35] Zhang X J, Zhang X H, Zou K, Lee C S and Lee S T 2007 J. Am. Chem. Soc. 129 3527
[36] Shrestha L K, Hill J P, Tsuruoka T, Miyazawa K and Ariga K 2013 Langmuir 29 7195
[37] Meletov K P, Dolganov V K, Zharikov O V, Kremenskaya I N and Ossipyan Y A 1992 J. Phys. I 2 2097
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[11] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[12] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[13] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[14] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[15] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
No Suggested Reading articles found!