Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078501    DOI: 10.1088/1674-1056/abe2fe
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures

Jia-Xin Wang(王加鑫)1,2,3, Xiao-Jing Li(李晓静)1,2,†, Fa-Zhan Zhao(赵发展)1,2,‡, Chuan-Bin Zeng(曾传滨)1,2, Duo-Li Li(李多力)1,2, Lin-Chun Gao(高林春)1,2, Jiang-Jiang Li(李江江)1,2, Bo Li(李博)1,2, Zheng-Sheng Han(韩郑生)1,2,3, and Jia-Jun Luo(罗家俊)1,2
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100029, China
Abstract  Trigger characteristics of electrostatic discharge (ESD) protecting devices operating under various ambient temperatures ranging from 30 ℃ to 195 ℃ are investigated. The studied ESD protecting devices are the H-gate NMOS transistors fabricated with a 0.18-μm partially depleted silicon-on-insulator (PDSOI) technology. The measurements are conducted by using a transmission line pulse (TLP) test system. The different temperature-dependent trigger characteristics of grounded-gate (GGNMOS) mode and the gate-triggered (GTNMOS) mode are analyzed in detail. The underlying physical mechanisms related to the effect of temperature on the first breakdown voltage VT1 are investigated through the assist of technology computer-aided design (TCAD) simulation.
Keywords:  ESD      trigger voltage      temperature      GGNMOS      GTNMOS      TCAD  
Received:  09 November 2020      Revised:  04 January 2021      Accepted manuscript online:  04 February 2021
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61804168).
Corresponding Authors:  Xiao-Jing Li, Fa-Zhan Zhao     E-mail:  lixiaojing1@ime.ac.cn;zhaofazhan@ime.ac.cn

Cite this article: 

Jia-Xin Wang(王加鑫), Xiao-Jing Li(李晓静), Fa-Zhan Zhao(赵发展), Chuan-Bin Zeng(曾传滨), Duo-Li Li(李多力), Lin-Chun Gao(高林春), Jiang-Jiang Li(李江江), Bo Li(李博), Zheng-Sheng Han(韩郑生), and Jia-Jun Luo(罗家俊) Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures 2021 Chin. Phys. B 30 078501

[1] Amerasekera E A and Duvvury C 2002 ESD in silicon integrated circuits, 2nd edn. (West Sussex: John Wiley & Sons, Ltd.) p. 400
[2] Zhu L, Liang H L, Gu X F and Xu J 2020 Chin. Phys. B 29 068503
[3] Hou F, Chen R B, Du F B, Liu J Z, Liu Z W and Liu J J 2019 Chin. Phys. B 28 088501
[4] Song W Q, Hou F, Du F B, Liu Z W and Liu J J 2020 Chin. Phys. B 29 098502
[5] Cressler J D and Mantooth H A 2017 Extreme environment electronics (Boca Raton: CRC Press) p. 1041
[6] Wang A Z H 2020 On-Chip ESD Protection for Integrated Circuits- An IC Design Perspective (Massachusetts: Springer Science & Business Media) p. 303
[7] Koo Y S, Lee H D, Won J I and Yang Y S 2010 The 2010 International Power Electronics Conference - ECCE ASIA, June 21-24, 2010, Sapporo, Japan, p. 248
[8] Meneghesso G, Tazzoli A, Marino F A, Cordoni M and Colombo P 2008 2008 IEEE International Reliability Physics Symposium, April 27-May 1, 2008, Phoenix, AZ, USA, p. 3
[9] Liang W, Dong A H, Li H, Miao M, Kuo C C, Klebanov M and Liou J J 2016 Microelectron. Reliab. 66 46
[10] Li C, Zhang F L, Wang C K, Chen Q, Lu F, Wang H, Di M F, Cheng Y H, Zhao H J and Wang A 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), October 31-November 3, 2018, Qingdao, China, p. 743
[11] Jang S L and Lin J K 2000 Solid-State Electron. 44 2139
[12] Jang S L, Lin L S and Li S H 2001 Solid-State Electron. 45 2005
[13] Hou F, Liu J Z, Liu Z W, Huang W, Gong T X, Yu B and Liou J J 2019 IEEE Trans. Electron Dev. 66 2044
[14] Do K I, Lee B S and Koo Y S 2019 IEEE Electron Dev. Lett. 40 283
[15] Arbess H and Bafleur M 2011 Microelectron. Reliab. 51 1980
[16] Wang J X, Li X J, Zhao F Z, Zeng C B, Li B, Han Z S and Luo J J 2020 Semiconductor Technology 46 210
[17] McKay K G 1954 Phys. Rev. 94 877
[18] Amerasekera A, Chang M C, Duvvury C and Ramaswamy S 1997 IEEE 34th Annual International Reliability Physics Symposium, April 30-May 2, 1996, Dallas, TX, USA, p. 318
[19] Li S S 1978 Solid-State Electron. 21 1109
[1] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[8] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[9] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[10] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[13] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[14] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[15] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
No Suggested Reading articles found!